903 resultados para Electrode
Resumo:
One new homoleptic Bi(dtc)(3)] (1) (dtc = 4-hydroxypiperdine dithiocarbamate) has been synthesized and characterized by microanalysis, IR, UV-Vis, H-1 and C-13 spectroscopy and X-ray crystallography. The photoluminescence spectrum for the compound in DMSO solution was recorded. The crystal structure of 1 displayed distorted octahedral geometry around the Bi(III) center bonded through sulfur atoms of the dithiocarbamate ligands. TGA indicates that the compound decomposes to a Bi and Bi-S phase system. The Bi and Bi-S obtained from decomposition of the compound have been characterized by pXRD, EDAX and SEM. Solvothermal decomposition of 1 in the absence and presence of two different capping agents yielded three morphologically different Bi2S3 systems which were deployed as counter-electrode in dye-sensitized solar cells (DSSCs). (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Stimulus artifacts inhibit reliable acquisition of biological evoked potentials for several milliseconds if an electrode contact is utilized for both electrical stimulation and recording purposes. This hinders the measurement of evoked short-latency biological responses, which is otherwise elicited by stimulation in implantable prosthetic devices. We present an improved stimulus artifact suppression scheme using two electrode simultaneous stimulation and differential readout using high-gain amplifiers. Substantial reduction of artifact duration has been shown possible through the common-mode rejection property of an instrumentation amplifier for electrode interfaces. The performance of this method depends on good matching of electrode-electrolyte interface properties of the chosen electrode pair. A novel calibration algorithm has been developed that helps in artificial matching of impedance and thereby achieves the required performance in artifact suppression. Stimulus artifact duration has been reduced down to 50 mu s from the stimulation-cum-recording electrodes, which is similar to 6x improvement over the present state of the art. The system is characterized with emulated resistor-capacitor loads and a variety of in-vitro metal electrodes dipped in saline environment. The proposed method is going to be useful for closed-loop electrical stimulation and recording studies, such as bidirectional neural prosthesis of retina, cochlea, brain, and spinal cord.
Resumo:
A simple yet remarkable, electrochemically activated carbon paste electrode (EACPE) was prepared by successive potential cycling of carbon paste in a 0.1 M NaOH solution and was effectively used for the simultaneous determination of catecholamines such as dopamine (DA), epinephrine (E) and Norepinephrine (NE) in presence of uric acid (UA) and ascorbic acid (AA). Taking DA as the ideal catecholamine, the electrochemical behaviors of DA, UA and AA such as scan rate and pH variation was studied by cyclic voltammetry (CV) in phosphate buffer solution (PBS, pH 7.1). This electrochemical sensor exhibited strong electrocatalytic activity towards the oxidation of a mixture of catecholamines, UA and AA with apparent reduction of overpotentials. Crider optimum conditions, limit of detection (S/N = 3) of DA, E, NE, UA and AA was found to be 0.08, 0.08, 0.07, 0.1 and 6.0 mu M, respectively by differential pulse voltammetry (DPV). The analytical performance of this modified electrode as a biosensor was also demonstrated for the determination of DA, UA and AA in dopamine injection, human urine and vitamin C tablets, respectively, in presence of other interfering substances. (C) 2015 The Electrochemical Society. All-rights reserved.
Resumo:
This work presents a new electrode, 2-benzoylnaphtho 2,1-b]furan hydrazone exfoliated graphite paste electrode (B-EGPE) fabricated for the differential pulse anodic stripping voltammetric determination of lead (Pb). Under the optimal conditions, Pb2+ could be detected in the concentration range from 2.75 x 10(-7) to 1.5 x 10(-6) mol/L with the linear regression equation, y = 19.41 x 10(-6) x + 0.4249 x 10(-9) with R = 0.99. Interferences from other ions were investigated and the proposed method was further applied to the trace levels of Pb2+ detection in real samples with satisfactory results.
Resumo:
Iridium nanoparticles-anchored reduced graphene oxide (Ir-RGO) was prepared by simultaneous reduction of graphene oxide and Ir3+ ions and its catalytic activity for oxygen electrode in Li-O-2 cells was demonstrated. Ir particles with an average size of 3.9 nm were uniformly distributed on RGO sheets. The oxygen reduction reaction (ORR) was studied on an Ir-RGO catalyst in non-aqueous electrolytes using cyclic voltammetry and rotating disk electrode techniques. Li-O-2 cells with Ir-RGO as a bifunctional oxygen electrode catalyst were subjected to charge-discharge cycling at several current densities. A discharge capacity of 9529 mA h g(-1) (11.36 mA h cm(-2)) was obtained initially at a current density of 0.5 mA cm(-2) (393 mA g(-1)). A decrease in capacity was observed on increasing the current density. Although there was a decrease in capacity on repeated discharge-charge cycling initially, a stable capacity was observed for about 30 cycles. The results suggest that Ir-RGO is a useful catalyst for rechargeable Li-O-2 cells.
Resumo:
Graphene was produced by electrochemical exfoliation of a used battery electrode. Aqueous solutions of cationic (cetyltrimethylammonium bromide), anionic (sodium dodecyl sulphate), and nonionic (poly vinyl pyrrolidone) surfactants, along with NaCl and combinations of these surfactants with NaCl, were used as the electrolyte. The following observations were made: (I) up to several micrometer sized graphene sheets were produced, (II) the addition of NaCl into the electrolytes significantly enhanced the yield of the exfoliated graphene, (III) the type of surfactant affected the defect density of the exfoliated product, and (IV) electrochemical impedance spectroscopy provided insight into the reason for the changes in the defect density ratio between the graphene samples.
Resumo:
In the quest for harnessing more power from the sun for water treatment by photoelectrochemical degradation, we prepared a novel photoanode of exfoliated graphite (EG)-ZnO nanocomposite. The nanocomposite was characterised by X-ray diffractometry, energy dispersive spectroscopy, Brunauer-Emmett-Teller surface area analyser, thermal gravimetric analyser, and X-ray photoelectron spectroscopy. The EG-ZnO nanocomposite was fabricated into a photoanode and applied for the photoelectrochemical degradation of 0.1 x 10(-4) M eosin yellowish dye in 0.1 M Na2SO4 under visible light irradiation. The degradation was monitored with a visible spectrophotometer. The photoelectrochemical degradation process resulted in enhanced degradation efficiency of ca. 93 % with kinetic rate of 11.0 x 10(-3) min(-1) over photolysis and electrochemical oxidation processes which exhibited lower degradation efficiencies of 35 and 40 % respectively.
Resumo:
Simple geometries which are possible alternatives for the Orbitrap are studied in this paper. We have taken up for numerical investigation two segmented-electrode structures, ORB1 and ORB2, to mimic the electric field of the Orbitrap. In the ORB1, the inner spindle-like electrode and the outer barrel-like electrode of the Orbitrap have been replaced by 35 rings and 35 discs of fixed radii, respectively. In this structure two segmented end cap electrodes have been added. In this geometry, different potentials are applied to the different electrodes keeping top-bottom symmetry intact. In the second geometry, ORB2, the inner and outer electrodes of the Orbitrap were replaced by an approximate step structure which follows the profile of the Orbitrap electrodes. In the present study 45 steps have been used. In the ORB2, like the Orbitrap, the inner electrode is held at a negative potential and the outer electrode is at ground potential. For the purpose of comparing the performance of ORB1 and ORB2 with that of the Orbitrap, the following studies have been undertaken: (1) variation of electric potential, (2) computation of ion trajectories, (3) simulation of image currents. These studies have been carried out using both 2D and 3D Boundary Element Method (BEM), the 3D BEM was developed specifically for this study. It has been seen in these investigations that ORB1 and ORB2 have performance similar to that of the Orbitrap, with the performance of the ORB1 being seen to be marginally superior to that of the ORB2. It has been shown that with proper optimization, geometries containing far fewer electrodes can be used as mass analyzers. A novel technique of optimization of the electric field has been proposed with the objective of minimizing the dependence of axial frequency of ion motion on the initial position of an ion. The results on the optimization of 9 and 15 segmented-electrode traps having the same design as ORB1 show that it can provide accurate mass analysis. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Simple geometries which are possible alternatives for the Orbitrap are studied in this paper. We have taken up for numerical investigation two segmented-electrode structures, ORB1 and ORB2, to mimic the electric field of the Orbitrap. In the ORB1, the inner spindle-like electrode and the outer barrel-like electrode of the Orbitrap have been replaced by 35 rings and 35 discs of fixed radii, respectively. In this structure two segmented end cap electrodes have been added. In this geometry, different potentials are applied to the different electrodes keeping top-bottom symmetry intact. In the second geometry, ORB2, the inner and outer electrodes of the Orbitrap were replaced by an approximate step structure which follows the profile of the Orbitrap electrodes. In the present study 45 steps have been used. In the ORB2, like the Orbitrap, the inner electrode is held at a negative potential and the outer electrode is at ground potential. For the purpose of comparing the performance of ORB1 and ORB2 with that of the Orbitrap, the following studies have been undertaken: (1) variation of electric potential, (2) computation of ion trajectories, (3) simulation of image currents. These studies have been carried out using both 2D and 3D Boundary Element Method (BEM), the 3D BEM was developed specifically for this study. It has been seen in these investigations that ORB1 and ORB2 have performance similar to that of the Orbitrap, with the performance of the ORB1 being seen to be marginally superior to that of the ORB2. It has been shown that with proper optimization, geometries containing far fewer electrodes can be used as mass analyzers. A novel technique of optimization of the electric field has been proposed with the objective of minimizing the dependence of axial frequency of ion motion on the initial position of an ion. The results on the optimization of 9 and 15 segmented-electrode traps having the same design as ORB1 show that it can provide accurate mass analysis. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
A poly(Nile blue) modified glassy carbon electrode (PNBMGCE) was fabricated by electropolymerisation of Nile blue (NB) monomer using cyclic voltammetry (CV) and was used for the determination of paracetamol (ACOP), tramadol (TRA) and caffeine (CAF). The electrochemical investigations showed that PNB - film formed on the surface of glassy carbon electrode (GCE) improved the electroactive surface area and displayed a remarkable increase in the peak current and a substantial decrease in over potential of ACOP, TRA and CAF when compared to bare GCE. The dependence of peak current and potential on pH, sweep rate and concentration were also investigated at the surface of PNBMGCE. It showed good sensitivity and selectivity in a wide linear range from 2.0 x 10(-7) to 1.62 x 10(-5) M, 1.0 x 10(-6) to 3.1 x 10(-4) M and 8.0 x 10(-7) to 2.0 x 10(-5) M, with detection limits of 0.08, 0.5 and 0.1 mu M, for ACOP, TRA and CAF, respectively. The PNBMGCE was also successfully applied for the determination of ACOP, TRA and CAF in pharmaceutical dosage forms. (C) 2016 Elsevier B.V. All rights reserved.
Resumo:
Layered composite samples of lithium-rich manganese oxide (Li1.2Mn0.6Ni0.2O2) are prepared by a reverse microemutsion route employing a soft polymer template and studied as a positive electrode material. The product samples possess dual porosity with distribution of pores at 3.5 and 60 nm. Pore volume and surface area decrease on increasing the temperature of preparation. Nevertheless, the electrochemical activity of the composite increases with an increase in temperature. The discharge capacity value of the samples prepared at 800 and 900 degrees C is about 240 mA h g(-1) at a specific current of 25 mA g(-1) with a good cycling stability. The composite sample heated at 900 degrees C possesses a high rate capability with a discharge capacity of 100 mA h g(-1) at a specific current of 500 mA g(-1). The high rate capability is attributed to porous nature of the composite sample.
Resumo:
In this work, polymer diode performance was analyzed by using nickel as anode electrode from two kinds of nickel as starting materials, namely nickel wire Ni{B} and nickel nano-particle Ni{N}. Metal electrode surface roughness and grain morphology were investigated by atomic force microscope and scanning electron microscope, respectively. Current-voltage (I-V) and capacitance-voltage (C-V) characteristics were measured for the fabricated device at room temperature. Obtained result from the current-voltage characteristics shows an increment in the current density for nickel nano-particle top electrode device. The increase in the current density could be due to a reduction in built-in voltage at P3HT/Ni{N} interface.
Resumo:
Using single-walled nanotubes as an example, we fabricated transparent conductive coatings and demonstrated a new technique of centrifuge coating as a potential low-waste, solution-based batch process for the fabrication of nanostructured coatings. A theoretical model is developed to account for the sheet resistance exhibited by layered random-network coatings such as nanofilaments and graphene. The model equation is analytical and compact, and allows the correlation of very different scaling regimes reported in the literature to the underlying coating microstructure. Finally, we also show a refined experimental setup to systematically measure the curvature-dependent sheet resistance.