790 resultados para Electrocatalyst sensor
Resumo:
The IEEE 802.15.4 has been adopted as a communication protocol standard for Low-Rate Wireless Private Area Networks (LRWPANs). While it appears as a promising candidate solution for Wireless Sensor Networks (WSNs), its adequacy must be carefully evaluated. In this paper, we analyze the performance limits of the slotted CSMA/CA medium access control (MAC) mechanism in the beacon-enabled mode for broadcast transmissions in WSNs. The motivation for evaluating the beacon-enabled mode is due to its flexibility and potential for WSN applications as compared to the non-beacon enabled mode. Our analysis is based on an accurate simulation model of the slotted CSMA/CA mechanism on top of a realistic physical layer, with respect to the IEEE 802.15.4 standard specification. The performance of the slotted CSMA/CA is evaluated and analyzed for different network settings to understand the impact of the protocol attributes (superframe order, beacon order and backoff exponent), the number of nodes and the data frame size on the network performance, namely in terms of throughput (S), average delay (D) and probability of success (Ps). We also analytically evaluate the impact of the slotted CSMA/CA overheads on the saturation throughput. We introduce the concept of utility (U) as a combination of two or more metrics, to determine the best offered load range for an optimal behavior of the network. We show that the optimal network performance using slotted CSMA/CA occurs in the range of 35% to 60% with respect to an utility function proportional to the network throughput (S) divided by the average delay (D).
Resumo:
This project was developed within the ART-WiSe framework of the IPP-HURRAY group (http://www.hurray.isep.ipp.pt), at the Polytechnic Institute of Porto (http://www.ipp.pt). The ART-WiSe – Architecture for Real-Time communications in Wireless Sensor networks – framework (http://www.hurray.isep.ipp.pt/art-wise) aims at providing new communication architectures and mechanisms to improve the timing performance of Wireless Sensor Networks (WSNs). The architecture is based on a two-tiered protocol structure, relying on existing standard communication protocols, namely IEEE 802.15.4 (Physical and Data Link Layers) and ZigBee (Network and Application Layers) for Tier 1 and IEEE 802.11 for Tier 2, which serves as a high-speed backbone for Tier 1 without energy consumption restrictions. Within this trend, an application test-bed is being developed with the objectives of implementing, assessing and validating the ART-WiSe architecture. Particularly for the ZigBee protocol case; even though there is a strong commercial lobby from the ZigBee Alliance (http://www.zigbee.org), there is neither an open source available to the community for this moment nor publications on its adequateness for larger-scale WSN applications. This project aims at fulfilling these gaps by providing: a deep analysis of the ZigBee Specification, mainly addressing the Network Layer and particularly its routing mechanisms; an identification of the ambiguities and open issues existent in the ZigBee protocol standard; the proposal of solutions to the previously referred problems; an implementation of a subset of the ZigBee Network Layer, namely the association procedure and the tree routing on our technological platform (MICAz motes, TinyOS operating system and nesC programming language) and an experimental evaluation of that routing mechanism for WSNs.
Resumo:
The recently standardized IEEE 802.15.4/Zigbee protocol stack offers great potentials for ubiquitous and pervasive computing, namely for Wireless Sensor Networks (WSNs). However, there are still some open and ambiguous issues that turn its practical use a challenging task. One of those issues is how to build a synchronized multi-hop cluster-tree network, which is quite suitable for QoS support in WSNs. In fact, the current IEEE 802.15.4/Zigbee specifications restrict the synchronization in the beacon-enabled mode (by the generation of periodic beacon frames) to star-based networks, while it supports multi-hop networking using the peer-to-peer mesh topology, but with no synchronization. Even though both specifications mention the possible use of cluster-tree topologies, which combine multi-hop and synchronization features, the description on how to effectively construct such a network topology is missing. This report tackles this problem, unveils the ambiguities regarding the use of the cluster-tree topology and proposes two collisionfree beacon frame scheduling schemes.
Resumo:
Structural health monitoring has long been identified as a prominent application of Wireless Sensor Networks (WSNs), as traditional wired-based solutions present some inherent limitations such as installation/maintenance cost, scalability and visual impact. Nevertheless, there is a lack of ready-to-use and off-the-shelf WSN technologies that are able to fulfill some most demanding requirements of these applications, which can span from critical physical infrastructures (e.g. bridges, tunnels, mines, energy grid) to historical buildings or even industrial machinery and vehicles. Low-power and low-cost yet extremely sensitive and accurate accelerometer and signal acquisition hardware and stringent time synchronization of all sensors data are just examples of the requirements imposed by most of these applications. This paper presents a prototype system for health monitoring of civil engineering structures that has been jointly conceived by a team of civil, and electrical and computer engineers. It merges the benefits of standard and off-the-shelf (COTS) hardware and communication technologies with a minimum set of custom-designed signal acquisition hardware that is mandatory to fulfill all application requirements.
Resumo:
In this paper a new method for the calculation of the fractional expressions in the presence of sensor redundancy and noise, is presented. An algorithm, taking advantage of the signal characteristics and the sensor redundancy, is tuned and optimized through genetic algorithms. The results demonstrate the good performance for different types of expressions and distinct levels of noise.
Resumo:
In practice the robotic manipulators present some degree of unwanted vibrations. The advent of lightweight arm manipulators, mainly in the aerospace industry, where weight is an important issue, leads to the problem of intense vibrations. On the other hand, robots interacting with the environment often generate impacts that propagate through the mechanical structure and produce also vibrations. In order to analyze these phenomena a robot signal acquisition system was developed. The manipulator motion produces vibrations, either from the structural modes or from endeffector impacts. The instrumentation system acquires signals from several sensors that capture the joint positions, mass accelerations, forces and moments, and electrical currents in the motors. Afterwards, an analysis package, running off-line, reads the data recorded by the acquisition system and extracts the signal characteristics. Due to the multiplicity of sensors, the data obtained can be redundant because the same type of information may be seen by two or more sensors. Because of the price of the sensors, this aspect can be considered in order to reduce the cost of the system. On the other hand, the placement of the sensors is an important issue in order to obtain the suitable signals of the vibration phenomenon. Moreover, the study of these issues can help in the design optimization of the acquisition system. In this line of thought a sensor classification scheme is presented. Several authors have addressed the subject of the sensor classification scheme. White (White, 1987) presents a flexible and comprehensive categorizing scheme that is useful for describing and comparing sensors. The author organizes the sensors according to several aspects: measurands, technological aspects, detection means, conversion phenomena, sensor materials and fields of application. Michahelles and Schiele (Michahelles & Schiele, 2003) systematize the use of sensor technology. They identified several dimensions of sensing that represent the sensing goals for physical interaction. A conceptual framework is introduced that allows categorizing existing sensors and evaluates their utility in various applications. This framework not only guides application designers for choosing meaningful sensor subsets, but also can inspire new systems and leads to the evaluation of existing applications. Today’s technology offers a wide variety of sensors. In order to use all the data from the diversity of sensors a framework of integration is needed. Sensor fusion, fuzzy logic, and neural networks are often mentioned when dealing with problem of combing information from several sensors to get a more general picture of a given situation. The study of data fusion has been receiving considerable attention (Esteban et al., 2005; Luo & Kay, 1990). A survey of the state of the art in sensor fusion for robotics can be found in (Hackett & Shah, 1990). Henderson and Shilcrat (Henderson & Shilcrat, 1984) introduced the concept of logic sensor that defines an abstract specification of the sensors to integrate in a multisensor system. The recent developments of micro electro mechanical sensors (MEMS) with unwired communication capabilities allow a sensor network with interesting capacity. This technology was applied in several applications (Arampatzis & Manesis, 2005), including robotics. Cheekiralla and Engels (Cheekiralla & Engels, 2005) propose a classification of the unwired sensor networks according to its functionalities and properties. This paper presents a development of a sensor classification scheme based on the frequency spectrum of the signals and on a statistical metrics. Bearing these ideas in mind, this paper is organized as follows. Section 2 describes briefly the robotic system enhanced with the instrumentation setup. Section 3 presents the experimental results. Finally, section 4 draws the main conclusions and points out future work.
Resumo:
This paper analyzes the signals captured during impacts and vibrations of a mechanical manipulator. To test the impacts, a flexible beam is clamped to the end-effector of a manipulator that is programmed in a way such that the rod moves against a rigid surface. Eighteen signals are captured and theirs correlation are calculated. A sensor classification scheme based on the multidimensional scaling technique is presented.
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para obtenção do grau de Mestre em Instrumentação, Manutenção Industrial e Qualidade
Resumo:
Journal of Applied Physics, Vol. 96, nº3
Resumo:
Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de Computadores
Resumo:
Nowadays the incredible grow of mobile devices market led to the need for location-aware applications. However, sometimes person location is difficult to obtain, since most of these devices only have a GPS (Global Positioning System) chip to retrieve location. In order to suppress this limitation and to provide location everywhere (even where a structured environment doesn’t exist) a wearable inertial navigation system is proposed, which is a convenient way to track people in situations where other localization systems fail. The system combines pedestrian dead reckoning with GPS, using widely available, low-cost and low-power hardware components. The system innovation is the information fusion and the use of probabilistic methods to learn persons gait behavior to correct, in real-time, the drift errors given by the sensors.
Resumo:
Nowadays there is an increase of location-aware mobile applications. However, these applications only retrieve location with a mobile device's GPS chip. This means that in indoor or in more dense environments these applications don't work properly. To provide location information everywhere a pedestrian Inertial Navigation System (INS) is typically used, but these systems can have a large estimation error since, in order to turn the system wearable, they use low-cost and low-power sensors. In this work a pedestrian INS is proposed, where force sensors were included to combine with the accelerometer data in order to have a better detection of the stance phase of the human gait cycle, which leads to improvements in location estimation. Besides sensor fusion an information fusion architecture is proposed, based on the information from GPS and several inertial units placed on the pedestrian body, that will be used to learn the pedestrian gait behavior to correct, in real-time, the inertial sensors errors, thus improving location estimation.
Resumo:
A Norfloxacina (NFX) é um antibiótico antibacteriano indicado para combater bactérias Gram-negativas e amplamente utilizado para o tratamento de infeções no trato respiratório e urinário. Com a necessidade de realizar estudos clínicos e farmacológicos esenvolveram-se métodos de análise rápida e sensitiva para a determinação da Norfloxacina. Neste trabalho foi desenvolvido um novo sensor eletroquímico sensível e seletivo para a deteção da NFX. O sensor foi construído a partir de modificações efetuadas num elétrodo de carbono vítreo. Inicialmente o elétrodo foi modificado com a deposição de uma suspensão de nanotubos de carbono de paredes múltiplas (MWCNT) de modo a aumentar a sensibilidade de resposta analítica. De seguida um filme polímerico molecularmente impresso (MIP) foi preparado por eletrodeposição, a partir de uma solução contendo pirrol (monómero funcional) e NFX (template). Um elétrodo de controlo não impresso foi também preparado (NIP). Estudouse e caraterizou-se a resposta eletroquímica do sensor para a oxidação da NFX por voltametria de onda quadrada. Foram optimizados diversos parâmetros experimentais, tais como, condições ótimas de polimerização, condições de incubação e condições de extração. O sensor apresenta um comportamento linear entre a intensidade da corrente do pico e o logaritmo da concentração de NFX na gama entre 0,1 e 8μM. Os resultados obtidos apresentam boa precisão, com repetibilidade inferior a 6% e reprodutibilidade inferior a 9%. Foi calculado a partir da curva de calibração um limite de deteção de 0,2 μM O método desenvolvido é seletivo, rápido e de fácil manuseamento. O sensor molecularmente impresso foi aplicado com sucesso na deteção da NFX em amostras de urina real e água.
Resumo:
Optically transparent cocatalyst film materials is very desirable for improved photoelectrochemical (PEC)oxygen evolution reaction (OER) over light harvesting photoelectrodes which require the exciting light to irradiate through the cocatalyst side, i.e., front-side illumination. In view of the reaction overpotential at electrode/electrolyte interface, the OER electrocatalysts have been extensively used as cocatalysts for PEC water oxidation on photoanode. In this work, the feasibility of a one-step fabrication of the transparent thin film catalyst for efficient electrochemical OER is investigated. The Ni-Fe bimetal oxide films, 200 nm in thickness, are used for study. Using a reactive magnetron co-sputtering technique, transparent(> 50% in wavelength range 500-2000 nm) Ni-Fe oxide films with high electrocatalytic activities were successfully prepared at room temperature. Upon optimization, the as-prepared bimetal oxide film with atomic ratio of Fe/Ni = 3:7 demonstrates the lowest overpotential for the OER in aqueous KOH solution, as low as 329 mV at current density of 2 mA cm 2, which is 135 and 108 mV lower than that of as-sputtered FeOx and NiOx thin films, respectively. It appears that this fabrication strategy is very promising to deposit optically transparent cocatalyst films on photoabsorbers for efficient PEC water splitting.
Resumo:
Dissertação apresentada para obtenção do grau de Mestre em Bioquímica Estrutural e Funcional, pela Universidade Nova de Lisboa, Faculdade de Ciências e Tecnologia