963 resultados para Electrical characterization of silver sulphide films


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reports on a case study of the impact of fabrication steps on InN material properties. We discuss the influence of annealing time and sequence of device processing steps. Photoluminescence (PL), surface morphology and electrical transport (electrical resistivity and low frequency noise) properties have been studied as responses to the adopted fabrication steps. Surface morphology has a strong correlation with annealing times, while sequences of fabrication steps do not appear to be influential. In contrast, the optical and electrical properties demonstrate correlation with both etching and thermal annealing. For all the studied samples PL peaks were in the vicinity of 0.7 eV, but the intensity and full width at half maximum (FWHM) demonstrate a dependence on the technological steps followed. Sheet resistance and electrical resistivity seem to be lower in the case of high defect introduction due to both etching and thermal treatments. The same effect is revealed through 1/f noise level measurements. A reduction of electrical resistivity is connected to an increase in 1/f noise level.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dielectric barrier discharge (DBD) air plasma is a novel technique for in-package decontamination of food, but it has not been yet applied to the packaging material. Characterization of commercial polylactic acid (PLA) films was done after in-package DBD plasma treatment at different voltages and treatment times to evaluate its suitability as food packaging material. DBD plasma increased the roughness of PLA film mainly at the site in contact with high voltage electrode at both the voltage levels of 70 and 80 kV. DBD plasma treatments did not induce any change in the glass transition temperature, but significant increase in the initial degradation temperature and maximum degradation temperature was observed. DBD plasma treatment did not adversely affect the oxygen and water vapor permeability of PLA. A very limited overall migration was observed in different food simulants and was much below the regulatory limits. Industrial relevance: In-package DBD plasma is a novel and innovative approach for the decontamination of foods with potential industrial application. This paper assesses the suitability of PLA as food packaging material for cold plasma treatment. It characterizes the effect of DBD plasma on the packaging material when used for in-package decontamination of food. The work described in this research offers a promising alternative to classical methods used in fruit and vegetable industries where in-package DBD plasma can serve as an effective decontamination process and avoids any post-process recontamination or hazards from the package itself.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Oggigiorno la ricerca di nuovi materiali per gradatori di campo da impiegarsi in accessori di cavi ha iniziato a studiare alcuni materiali nano dielettrici con proprietà elettriche non lineari con la tensione ed aventi proprietà migliorate rispetto al materiale base. Per questo motivo in questo elaborato si sono studiati materiali nanostrutturati a base di polietilene a bassa densità (LDPE) contenenti nano polveri di grafene funzionalizzato (G*), ossido di grafene (GO) e carbon black (CB). Il primo obiettivo è stato quello di selezionare e ottimizzare i metodi di fabbricazione dei provini. La procedura di produzione è suddivisa in due parti. Nella prima parte è stata utilizzatala tecnica del ball-milling, mentre nella seconda un pressa termica (thermal pressing). Mediante la spettroscopia dielettrica a banda larga (BDS) si sono misurate le componenti reali e immaginarie della permettività e il modulo della conducibilità del materiale, in tensione alternata. Il miglioramento delle proprietà rispetto al provino di base composto dal solo polietilene si sono ottenute quando il quantitativo delle nanopolveri era maggiore. Le misure sono state effettuate sia a 3 V che a 1 kV. Attraverso misurazioni di termogravimetria (TGA) si è osservato l’aumento della resistenza termica di tutti i provini, soprattutto nel caso quando la % di nanopolveri è maggiore. Per i provini LDPE + 0.3 wt% GO e LDPE + 0.3 wt% G* si è misurata la resistenza alle scariche parziali attraverso la valutazione dell’erosione superficiale dei provini. Per il provino contenente G* è stato registrato una diminuzione del 22% del volume eroso, rispetto al materiale base, mentre per quello contenente GO non vi sono state variazioni significative. Infine si è ricercata la resistenza al breakdown di questi ultimi tre provini sopra citati. Per la caratterizzazione si è fatto uso della distribuzione di Weibull. Lo scale parameter α risulta aumentare solo per il provino LDPE + 0.3 wt% G*.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A complete electrical characterization of hydrogenated amorphous silicon layers (a-Si:H) deposited on crystalline silicon (c-Si) substrates by electron cyclotron resonance chemical vapor deposition (ECR-CVD) was carried out. These structures are of interest for photovoltaic applications. Different growth temperatures between 30 and 200 °C were used. A rapid thermal annealing in forming gas atmosphere at 200 °C during 10 min was applied after the metallization process. The evolution of interfacial state density with the deposition temperature indicates a better interface passivation at higher growth temperatures. However, in these cases, an important contribution of slow states is detected as well. Thus, using intermediate growth temperatures (100–150 °C) might be the best choice.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed investigation both of the DC and of the AC electrical properties of the Schottky barrier formed between aluminium and electrodeposited poly(3-methylthiophene) is reported. The devices show rectification ratios up to 2 x 10(4) which can be increased further after post-metal annealing. The reverse characteristics of the devices follow predictions based on the image-force lowering of the Schottky barrier, from which the doping density can be estimated, As the forward voltage increases, the device current is limited by the bulk resistance of the polymer with some evidence for injection limitation at the gold counter-electrode at high bias. In the bulk-limited regime, the device current is thermally activated near room temperature with an activation energy in the range 0.2-0.3 eV. Below about 150 K the device current is almost independent of temperature. Capacitance-voltage plots obtained at frequencies well below the device relaxation frequency indicate the presence of two distinct acceptor states, A set of shallow acceptor states are active in forward bias and are believed to determine the bulk conductivity of the polymer. A set of deeper accepters are active only for very small forward voltages and for all reverse voltages, namely when band banding causes the Fermi energy to cross these states. The density of these deeper states is approximately an order of magnitude greater than that of the shallow states. Evidence is presented also for the influence of fabrication conditions on the formation of an insulating interfacial layer at the rectifying interface. The presence of such a layer leads to inversion at the polymer surface and a modification of the I-V characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schottky diodes resulting from an intimate contact of aluminum on electrodeposited poly(3-methylthiopene) were studied by admittance spectroscopy, capacitance-voltage measurements and voltaic and optically-induced current and capacitance transients. The loss tangents show the existence of interface states that can be removed by vacuum annealing. Furthermore, the C-V curves contradict the idea of movement of the dopant ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dissertação de Mestrado, Engenharia Electrónica e Telecomunicações, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purpose: To investigate the efficiency of silver nanoparticles synthesized by wet chemical method, and evaluate their antibacterial and anti-cancer activities. Methods: Wet chemical method was used to synthesize silver nanoparticles (AgNPs) from silver nitrate, trisodium citrate dehydrate (C6H5O7Na3.2H2O) and sodium borohydride (NaBH4) as reducing agent. The AgNPs and the reaction process were characterized by UV–visible spectrometry, zetasizer, transmission electron microscopy (TEM) and scanning electron microscopy (SEM) equipped with energy dispersive spectroscopy (EDS). The antibacterial and cytotoxic effects of the synthesized nanoparticles were investigated by agar diffusion method and MTT assay respectively. Results: The silver nanoparticles formed were spherical in shape with mean size of 10.3 nm. The results showed good antibacterial properties, killing both Gram-positive and Gram-negative bacteria, and its aqueous suspension displayed cytotoxic activity against colon adenocarcinoma (HCT-116) cell line. Conclusion: The findings indicate that silver nanoparticles synthesized by wet chemical method demonstrate good cytotoxic activity in colon adenocarcinoma (HCT-116) cell lines and strong antibacterial activity against various strains of bacteria.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The electrical characteristics of CVD-diamond/n(+)-Si heterojunction devices are reported. Below 250 K the diodes show an unusual inversion of their rectification properties. This behavior is attributed to an enhanced tunneling component due to interface states, which change their occupation with the applied bias. The temperature dependence of the loss tangent shows two relaxation processes with different activation energies. These processes are likely related with two parallel charge transport mechanisms, one through the diamond grain, and the other through the grain boundary. (C) 2001 Elsevier Science B.V. Ah rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A detailed investigation both of the DC and of the AC electrical properties of the Schottky barrier formed between aluminium and electrodeposited poly(3-methylthiophene) is reported. The devices show rectification ratios up to 2 x 10(4) which can be increased further after post-metal annealing. The reverse characteristics of the devices follow predictions based on the image-force lowering of the Schottky barrier, from which the doping density can be estimated, As the forward voltage increases, the device current is limited by the bulk resistance of the polymer with some evidence for injection limitation at the gold counter-electrode at high bias. In the bulk-limited regime, the device current is thermally activated near room temperature with an activation energy in the range 0.2-0.3 eV. Below about 150 K the device current is almost independent of temperature. Capacitance-voltage plots obtained at frequencies well below the device relaxation frequency indicate the presence of two distinct acceptor states, A set of shallow acceptor states are active in forward bias and are believed to determine the bulk conductivity of the polymer. A set of deeper accepters are active only for very small forward voltages and for all reverse voltages, namely when band banding causes the Fermi energy to cross these states. The density of these deeper states is approximately an order of magnitude greater than that of the shallow states. Evidence is presented also for the influence of fabrication conditions on the formation of an insulating interfacial layer at the rectifying interface. The presence of such a layer leads to inversion at the polymer surface and a modification of the I-V characteristics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An investigation into the stability of metal insulator semiconductor (MIS) transistors based on alpha-sexithiophene is reported. In particular the kinetics of the threshold voltage shift upon application of a gate bias has been determined. The kinetics follow a stretched-hyperbola type behavior, in agreement with the formalism developed to explain metastability in amorphous-silicon thin film transistors. Using this model, quantification of device stability is possible. Temperature-dependent measurements show that there are two processes involved in the threshold voltage shift, one occurring at T approximate to 220 K and the other at T approximate to 300 K. The latter process is found to be sample dependent. This suggests a relation between device stability and alpha-sexithiophene deposition parameters. Copyright (c) 2005 John Wiley A Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Schottky diodes resulting from an intimate contact of aluminum on electrodeposited poly(3-methylthiopene) were studied by admittance spectroscopy, capacitance-voltage measurements and voltaic and optically-induced current and capacitance transients. The loss tangents show the existence of interface states that can be removed by vacuum annealing. Furthermore, the C-V curves contradict the idea of movement of the dopant ions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(phenylene vinylene) (PPV) grown via the precursor route, deposited on top of heavily doped n-type silicon, was studied using electrical measurement techniques. The results are compared to PPV grown via deposition of soluble derivative (MEH-PPV). The two types are very similar. They have comparable free carrier densities and both show minority-carrier effects. The activation energy found via the loss tangent is 0.13 eV. The effect of exposure to oxygen is visible in the capacitance and the current.