991 resultados para Electric space charge
Resumo:
One of the most diffused electronic device is the field effect transistor (FET), contained in number of billions in each electronic device. Organic optoelectronics is an emerging field that exploits the unique properties of conjugated organic materials to develop new applications that require a combination of performance, low cost and processability. Organic single crystals are the material with best performances and purity among the variety of different form of organic semiconductors. This thesis is focused on electrical and optical characterization of Rubrene single crystal bulk and thin films. Rubrene bulk is well known but for the first time we studied thin films. The first Current-voltage characterization has been performed for the first time on three Rubrene thin films with three different thickness to extract the charge carriers mobility and to assess its crystalline structure. As results we see that mobility increase with thickness. Field effect transistor based on Rubrene thin films on $SiO_2$ have been characterize by current-voltage (I-V) analyses (at several temperatures) and reveals a hopping conduction. Hopping behavior probably is due to the lattice mismatch with the substrate or intrinsic defectivity of the thin films. To understand effects of contact resistance we tested thin films with the Transmission Line Method (TLM) method. The TLM method revealeds that contact resistance is negligible but evidenced a Schottky behavior in a limited but well determined range of T. To avoid this effect we carried out annealing treatment after the electrode evaporation iswe performed a compete I-V characterization as a function of in temperature to extract the electronic density of states (DOS) distribution through the Space Charge Limited Current (SCLC) method. The results show a DOS with an exponential trenddistribution, as expected. The measured mobility of thin films is about 0.1cm^2/Vs and it increases with the film thickness. Further studies are necessary to investigate the reason and improve performances. From photocurrent spectrum we calculated an Eg of about 2.2eV and both thin films and bulk have a good crystal order. Further measurement are necessary to solve some open problems
Resumo:
Auf Paulfallen basierende Experimente spielen eine wichtige Rolle in verschiedenen Bereichen der Physik, z.B. der Atomphysik zum Test theoretischer Modelle und der Massenspektroskopie. Die vorliegende Arbeit widmet sich beiden Themengebieten und gliedert sich entsprechend in zwei Teilbereiche: 1) Erdalkali-Ionen sind aufgrund ihrer Energieniveaus optimale Kandidaten für Laserspektroskopie-Experimente mit Ionenfallen und bestens geeignet, um mittels der spektroskopischen Daten die theoretischen Modelle zu testen. Lediglich für Ra+ fehlen bislang als einzigem Erdalkali-Ion diese Daten wie z.B. die Lebensdauern der metastabilen Niveaus. Diese wären auch von Interesse für bereits geplante Radium-Experimente zur Paritätsverletzung. Im ersten Teil dieser Arbeit wird der Aufbau eines Laser-Paulfallenexperiments zur Messung der Lebensdauer des 6D3/2 Zustands von 226Ra+ dokumentiert und es werden Testmessungen mit 138Ba+ vorgestellt. 2) Für die Verwendung der Paulfalle in der Massenspektroskopie und zur Analyse von Reaktionsprodukten ist die Kenntnis der Lage der im Speicherbereich auftretenden nichtlinearen Resonanzen wesentlich, ebenso wie deren Veränderung durch Dämpfung und Raumladung. Im zweiten Teil dieser Arbeit werden detaillierte Untersuchungen der Speicherung großer puffergasgekühlter Ionenwolken an zwei unterschiedlichen Paulfallen-Experimenten vorgestellt. Am ersten wurden 138Ba+-Ionenwolken kontinuierlich durch Laserspektroskopie bzw. über einen elektronischen Nachweis beobachtet, während das zweite N2+-Molekülionen automatisiert destruktiv nachwies. Am N2+-Experiment wurden zwei hochaufgelöste Messungen des ersten Speicherbereichs durchgeführt, die erstmals eine direkte Überprüfung der theoretisch berechneten Verläufe der Resonanzen mit experimentellen Daten erlauben. Die Nachweiseichung ermöglichte dabei zum ersten Mal die Angabe absoluter Ionenzahlen. Im Gegensatz zu vergleichbaren früheren Messungen wurden hierbei die sich überlagernden Speicherbereiche von 4 simultan gespeicherten Ionensorten beobachtet und zur Analyse der Resonanzen herangezogen. Die nichtlinearen Resonanzen wurden untersucht bei Variation von Puffergasdruck und Ionenzahl, wobei kollektive Resonanzen ohne zusätzliche externe Anregung beobachtet wurden. Die gemessenen Raumladungsverschiebungen wurden mit theoretischen Modellen verglichen. Bei Variation des Puffergasdrucks wurde mit Bariumionen die räumliche Ausdehnung der Ionenwolke gemessen und mit Stickstoffionen die Verschiebung des Punktes optimaler Speicherung bestimmt. Dabei wurde festgestellt, daß der zum Ioneneinfang optimale Puffergasdruck kleiner ist als der, bei dem die längsten Speicherdauern erzielt werden. Mit gespeicherten N2+-Ionen wurde die Position extern angeregter kollektiver und individueller Resonanzen im Frequenzspektrum bei Änderung der Parameter Ionenzahl, Puffergasdruck und Dauer der Anregung untersucht, ebenso wie die Resonanzform, die mit theoretischen Linienformen verglichen wurde. Bei Änderung der Fallenparameter wurden verstärkende Effekte zwischen nahen kollektiven Resonanzen festgestellt. Die Beobachtung, welche der im Frequenzspektrum vorher identifizierten Bewegungs-Resonanzen sich bei Variation der Fallenparameter a bzw. q überlagern, ermöglicht eine bislang nicht beschriebene einfache Methode der Bestimmung von nichtlinearen Resonanzen im Stabilitätsdiagramm.
Resumo:
The present thesis is focused on the study of Organic Semiconducting Single Crystals (OSSCs) and crystalline thin films. In particular solution-grown OSSC, e.g. 4-hdroxycyanobenzene (4HCB) have been characterized in view of their applications as novel sensors of X-rays, gamma-rays, alpha particles radiations and chemical sensors. In the field of ionizing radiation detection, organic semiconductors have been proposed so far mainly as indirect detectors, i.e. as scintillators or as photodiodes. I first study the performance of 4HCB single crystals as direct X-ray detector i.e. the direct photon conversion into an electrical signal, assessing that they can operate at room temperature and in atmosphere, showing a stable and linear response with increasing dose rate. A dedicated study of the collecting electrodes geometry, crystal thickness and interaction volume allowed us to maximize the charge collection efficiency and sensitivity, thus assessing how OSSCs perform at low operating voltages and offer a great potential in the development of novel ionizing radiation sensors. To better understand the processes generating the observed X-ray signal, a comparative study is presented on OSSCs based on several small-molecules: 1,5-dinitronaphthalene (DNN), 1,8-naphthaleneimide (NTI), Rubrene and TIPS-pentacene. In addition, the proof of principle of gamma-rays and alpha particles has been assessed for 4HCB single crystals. I have also carried out an investigation of the electrical response of OSSCs exposed to vapour of volatile molecules, polar and non-polar. The last chapter deals with rubrene, the highest performing molecular crystals for electronic applications. We present an investigation on high quality, millimeter-sized, crystalline thin films (10 – 100 nm thick) realized by exploiting organic molecular beam epitaxy on water-soluble substrates. Space-Charge-Limited Current (SCLC) and photocurrent spectroscopy measurements have been carried out. A thin film transistor was fabricated onto a Cytop® dielectric layer. The FET mobility exceeding 2 cm2/Vs, definitely assess the quality of RUB films.
Resumo:
Uno dei settori che più si stanno sviluppando nell'ambito della ricerca applicata è senza dubbio quello dell'elettronica organica. Nello specifico lo studio è sospinto dagli indubbi vantaggi che questi dispositivi porterebbero se venissero prodotti su larga scala: basso costo, semplicità realizzativa, leggerezza, flessibilità ed estensione. È da sottolineare che dispositivi basati su materiali organici sono già stati realizzati: si parla di OLED (Organic Light Emitting Diode) LED realizzati sfruttando le proprietà di elettroluminescenza di alcuni materiali organici, OFET (Organig Field Effect Transistor) transistor costruiti con semiconduttori organici, financo celle solari che sfruttano le buone proprietà ottiche di questi composti. Oggetto di analisi di questa tesi è lo studio delle proprietà di trasporto di alcuni cristalli organici, al fine di estrapolarne la mobilità intrinseca e verificare come essa cambi se sottoposti a radiazione x. I due cristalli su cui si è focalizzata questa trattazione sono il 1,5-Dinitronaphtalene e il 2,4-Dinitronaphtol; su di essi è stata eseguita una caratterizzazione ottica e una elettrica, in seguito interpretate con il modello SCLC (Space Charge Limited Current). I risultati ottenuti mostrano che c'è una differenza apprezzabile nella mobilità nei due casi con e senza irraggiamento con raggi x.
Resumo:
Current to a cylindrical probe of arbitrary cross section is discussed. Previous results for circular cylinders at the high bias and moderate radius R of interest for electrodynamic bare tethers, for which space charge may be ignored over a large neighborhood of the probe, depend in separate ways on both R and perimeter p. These results are extended to a general convex cross section by introducing certain equivalent radius Req. For any concave cross section, results use a proper equivalent perimeter peq , in addition to Req. Finally, for the joint cross section of separate parallel probes, certain effective perimeter peff replaces peq. Rules to determine Req. peq. and peff are used to discuss collection interference among two or more parallel cylinders when brought from far away to contact
Resumo:
A new material, C12A7 : electride, which might present a work function as low as 0.6 eV and moderately high temperature stability, was recently proposed as coating for floating bare tethers. Arising from heating under space operation, current is emitted by thermionic emission along a thus coated cathodic segment. A preliminary study on the space-charge-limited (SCL) double layer in front of the cathodic segment is presented using Langmuir’s SCL electron current between cylindrical electrodes and orbital-motion-limited ion-collection sheath. A detailed calculation of current and bias profiles along the entire tether length is carried out with ohmic effects and the transition from SCL to full Richardson-Dushman emission included. Analysis shows that in the simplest drag mode, under typical orbital and tether conditions, thermionic emission leads to a short cathodic section and may eliminate the need for an active cathodic device and its corresponding gas feed requirements and power subsystem, which results in a truly “propellant-less” tether system for such basic applications as de-orbiting low earth orbit satellites.
Resumo:
Performances of ED-tethers using either spherical collectors or bare tethers for drag, thrust, or power generation, are compared. The standard Parker-Murphy model of current to a full sphere, with neither space-charge nor plasmamotion effects considered, but modified to best fit TSS1R results, is used (the Lam, Al'pert/Gurevich space-charge limited model will be used elsewhere) In the analysis, the spherical collector is assumed to collect current well beyond its random-current value (thick-heath). Both average current in the bare-tether and current to the sphere are normalized with the short-circuit current in the absence of applied power, allowing a comparison of performances for all three applications in terms of characteristic dimensionless numbers. The sphere is always substantially outperformed by the bare-tether if ohmic effects are weak, though its performance improves as such effects increase.
Resumo:
El trabajo que ha dado lugar a esta Tesis Doctoral se enmarca en la invesitagación en células solares de banda intermedia (IBSCs, por sus siglas en inglés). Se trata de un nuevo concepto de célula solar que ofrece la posibilidad de alcanzar altas eficiencias de conversión fotovoltaica. Hasta ahora, se han demostrado de manera experimental los fundamentos de operación de las IBSCs; sin embargo, esto tan sólo has sido posible en condicines de baja temperatura. El concepto de banda intermedia (IB, por sus siglas en inglés) exige que haya desacoplamiento térmico entre la IB y las bandas de valencia y conducción (VB and CB, respectivamente, por sus siglas en inglés). Los materiales de IB actuales presentan un acoplamiento térmico demasiado fuerte entre la IB y una de las otras dos bandas, lo cual impide el correcto funcionamiento de las IBSCs a temperatura ambiente. En el caso particular de las IBSCs fabricadas con puntos cuánticos (QDs, por sus siglas en inglés) de InAs/GaAs - a día de hoy, la tecnología de IBSC más estudiada - , se produce un rápido intercambio de portadores entre la IB y la CB, por dos motivos: (1) una banda prohibida estrecha (< 0.2 eV) entre la IB y la CB, E^, y (2) la existencia de niveles electrónicos entre ellas. El motivo (1) implica, a su vez, que la máxima eficiencia alcanzable en estos dispositivos es inferior al límite teórico de la IBSC ideal, en la cual E^ = 0.71 eV. En este contexto, nuestro trabajo se centra en el estudio de IBSCs de alto gap (o banda prohibida) fabricadsas con QDs, o lo que es lo mismo, QD-IBSCs de alto gap. Hemos fabricado e investigado experimentalmente los primeros prototipos de QD-IBSC en los que se utiliza AlGaAs o InGaP para albergar QDs de InAs. En ellos demostramos une distribución de gaps mejorada con respecto al caso de InAs/GaAs. En concreto, hemos medido valores de E^ mayores que 0.4 eV. En los prototipos de InAs/AlGaAs, este incremento de E^ viene acompaado de un incremento, en más de 100 meV, de la energía de activación del escape térmico. Además, nuestros dispositivos de InAs/AlGaAs demuestran conversión a la alza de tensión; es decir, la producción de una tensión de circuito abierto mayor que la energía de los fotones (dividida por la carga del electrón) de un haz monocromático incidente, así como la preservación del voltaje a temperaura ambiente bajo iluminación de luz blanca concentrada. Asimismo, analizamos el potencial para detección infrarroja de los materiales de IB. Presentamos un nuevo concepto de fotodetector de infrarrojos, basado en la IB, que hemos llamado: fotodetector de infrarrojos activado ópticamente (OTIP, por sus siglas en inglés). Nuestro novedoso dispositivo se basa en un nuevo pricipio físico que permite que la detección de luz infrarroja sea conmutable (ON y OFF) mediante iluminación externa. Hemos fabricado un OTIP basado en QDs de InAs/AlGaAs con el que demostramos fotodetección, bajo incidencia normal, en el rango 2-6/xm, activada ópticamente por un diodoe emisor de luz de 590 nm. El estudio teórico del mecanismo de detección asistido por la IB en el OTIP nos lleva a poner en cuestión la asunción de quasi-niveles de Fermi planos en la zona de carga del espacio de una célula solar. Apoyados por simuaciones a nivel de dispositivo, demostramos y explicamos por qué esta asunción no es válida en condiciones de corto-circuito e iluminación. También llevamos a cabo estudios experimentales en QD-IBSCs de InAs/AlGaAs con la finalidad de ampliar el conocimiento sobre algunos aspectos de estos dispositivos que no han sido tratados aun. En particular, analizamos el impacto que tiene el uso de capas de disminución de campo (FDLs, por sus siglas en inglés), demostrando su eficiencia para evitar el escape por túnel de portadores desde el QD al material anfitrión. Analizamos la relación existente entre el escape por túnel y la preservación del voltaje, y proponemos las medidas de eficiencia cuántica en función de la tensión como una herramienta útil para evaluar la limitación del voltaje relacionada con el túnel en QD-IBSCs. Además, realizamos medidas de luminiscencia en función de la temperatura en muestras de InAs/GaAs y verificamos que los resltados obtenidos están en coherencia con la separación de los quasi-niveles de Fermi de la IB y la CB a baja temperatura. Con objeto de contribuir a la capacidad de fabricación y caracterización del Instituto de Energía Solar de la Universidad Politécnica de Madrid (IES-UPM), hemos participado en la instalación y puesta en marcha de un reactor de epitaxia de haz molecular (MBE, por sus siglas en inglés) y el desarrollo de un equipo de caracterización de foto y electroluminiscencia. Utilizando dicho reactor MBE, hemos crecido, y posteriormente caracterizado, la primera QD-IBSC enteramente fabricada en el IES-UPM. ABSTRACT The constituent work of this Thesis is framed in the research on intermediate band solar cells (IBSCs). This concept offers the possibility of achieving devices with high photovoltaic-conversion efficiency. Up to now, the fundamentals of operation of IBSCs have been demonstrated experimentally; however, this has only been possible at low temperatures. The intermediate band (IB) concept demands thermal decoupling between the IB and the valence and conduction bands. Stateof- the-art IB materials exhibit a too strong thermal coupling between the IB and one of the other two bands, which prevents the proper operation of IBSCs at room temperature. In the particular case of InAs/GaAs quantum-dot (QD) IBSCs - as of today, the most widely studied IBSC technology - , there exist fast thermal carrier exchange between the IB and the conduction band (CB), for two reasons: (1) a narrow (< 0.2 eV) energy gap between the IB and the CB, EL, and (2) the existence of multiple electronic levels between them. Reason (1) also implies that maximum achievable efficiency is below the theoretical limit for the ideal IBSC, in which EL = 0.71 eV. In this context, our work focuses on the study of wide-bandgap QD-IBSCs. We have fabricated and experimentally investigated the first QD-IBSC prototypes in which AlGaAs or InGaP is the host material for the InAs QDs. We demonstrate an improved bandgap distribution, compared to the InAs/GaAs case, in our wide-bandgap devices. In particular, we have measured values of EL higher than 0.4 eV. In the case of the AlGaAs prototypes, the increase in EL comes with an increase of more than 100 meV of the activation energy of the thermal carrier escape. In addition, in our InAs/AlGaAs devices, we demonstrate voltage up-conversion; i. e., the production of an open-circuit voltage larger than the photon energy (divided by the electron charge) of the incident monochromatic beam, and the achievement of voltage preservation at room temperature under concentrated white-light illumination. We also analyze the potential of an IB material for infrared detection. We present a IB-based new concept of infrared photodetector that we have called the optically triggered infrared photodetector (OTIP). Our novel device is based on a new physical principle that allows the detection of infrared light to be switched ON and OFF by means of an external light. We have fabricated an OTIP based on InAs/AlGaAs QDs with which we demonstrate normal incidence photodetection in the 2-6 /xm range optically triggered by a 590 nm light-emitting diode. The theoretical study of the IB-assisted detection mechanism in the OTIP leads us to questioning the assumption of flat quasi-Fermi levels in the space-charge region of a solar cell. Based on device simulations, we prove and explain why this assumption is not valid under short-circuit and illumination conditions. We perform new experimental studies on InAs/GaAs QD-IBSC prototypes in order to gain knowledge on yet unexplored aspects of the performance of these devices. Specifically, we analyze the impact of the use of field-damping layers, and demonstrate this technique to be efficient for avoiding tunnel carrier escape from the QDs to the host material. We analyze the relationship between tunnel escape and voltage preservation, and propose voltage-dependent quantum efficiency measurements as an useful technique for assessing the tunneling-related limitation to the voltage preservation of QD-IBSC prototypes. Moreover, we perform temperature-dependent luminescence studies on InAs/GaAs samples and verify that the results are consistent with a split of the quasi-Fermi levels for the CB and the IB at low temperature. In order to contribute to the fabrication and characterization capabilities of the Solar Energy Institute of the Universidad Polite´cnica de Madrid (IES-UPM), we have participated in the installation and start-up of an molecular beam epitaxy (MBE) reactor and the development of a photo and electroluminescence characterization set-up. Using the MBE reactor, we have manufactured and characterized the first QD-IBSC fully fabricated at the IES-UPM.
Resumo:
Thinning the absorber layer is one of the possibilities envisaged to further decrease the production costs of Cu(In,Ga)Se2 (CIGSe) thin films solar cell technology. In the present study, the electronic transport in submicron CIGSe-based devices has been investigated and compared to that of standard devices. It is observed that when the absorber is around 0.5 μm-thick, tunnelling enhanced interface recombination dominates, which harms cells energy conversion efficiency. It is also shown that by varying either the properties of the Mo back contact or the characteristics of 3-stage growth processing, one can shift the dominating recombination mechanism from interface to space charge region and thereby improve the cells efficiency. Discussions on these experimental facts led to the conclusions that 3-stage process implies the formation of a CIGSe/CIGSe homo-interface, whose location as well as properties rule the device operation; its influence is enhanced in submicron CIGSe based solar cells.
Resumo:
In the last decades, an increasing interest in the research field of wide bandgap semiconductors was observed, mostly due to the progressive approaching of silicon-based devices to their theoretical limits. 4H-SiC is an example among these, and is a mature compound for applications. The main advantages offered 4H-SiC in comparison with silicon are an higher breakdown field, an higher thermal conductivity, a higher operating temperature, very high hardness and melting point, biocompatibility, but also low switching losses in high frequencies applications and lower on-resistances in unipolar devices. Then, 4H-SiC power devices offer great performance improvement; moreover, they can work in hostile environments where silicon power devices cannot function. Ion implantation technology is a key process in the fabrication of almost all kinds of SiC devices, owing to the advantage of a spatially selective doping. This work is dedicated to the electrical investigation of several differently-processed 4H-SiC ion- implanted samples, mainly through Hall effect and space charge spectroscopy experiments. It was also developed the automatic control (Labview) of several experiments. In the work, the effectiveness of high temperature post-implant thermal treatments (up to 2000°C) were studied and compared considering: (i) different methods, (ii) different temperatures and (iii) different duration of the annealing process. Preliminary p + /n and Schottky junctions were also investigated as simple test devices. 1) Heavy doping by ion implantation of single off-axis 4H-SiC layers The electrical investigation is one of the most important characterization of ion-implanted samples, which must be submitted to mandatory post-implant thermal treatment in order to both (i) recover the lattice after ion bombardment, and (ii) address the implanted impurities into lattice sites so that they can effectively act as dopants. Electrical investigation can give fundamental information on the efficiency of the electrical impurity activation. To understand the results of the research it should be noted that: (a) To realize good ohmic contacts it is necessary to obtain spatially defined highly doped regions, which must have conductivity as low as possible. (b) It has been shown that the electrical activation efficiency and the electrical conductivity increase with the annealing temperature increasing. (c) To maximize the layer conductivity, temperatures around 1700°C are generally used and implantation density high till to 10 21 cm -3 . In this work, an original approach, different from (c), is explored by the using very high annealing temperature, around 2000°C, on samples of Al + -implant concentration of the order of 10 20 cm -3 . Several Al + -implanted 4H-SiC samples, resulting of p-type conductivity, were investigated, with a nominal density varying in the range of about 1-5∙10 20 cm -3 and subjected to two different high temperature thermal treatments. One annealing method uses a radiofrequency heated furnace till to 1950°C (Conventional Annealing, CA), the other exploits a microwave field, providing a fast heating rate up to 2000°C (Micro-Wave Annealing, MWA). In this contest, mainly ion implanted p-type samples were investigated, both off-axis and on-axis <0001> semi-insulating 4H-SiC. Concerning p-type off-axis samples, a high electrical activation of implanted Al (50-70%) and a compensation ratio below 10% were estimated. In the work, the main sample processing parameters have been varied, as the implant temperature, CA annealing duration, and heating/cooling rates, and the best values assessed. MWA method leads to higher hole density and lower mobility than CA in equivalent ion implanted layers, resulting in lower resistivity, probably related to the 50°C higher annealing temperature. An optimal duration of the CA treatment was estimated in about 12-13 minutes. A RT resistivity on the lowest reported in literature for this kind of samples, has been obtained. 2) Low resistivity data: variable range hopping Notwithstanding the heavy p-type doping levels, the carrier density remained less than the critical one required for a semiconductor to metal transition. However, the high carrier densities obtained was enough to trigger a low temperature impurity band (IB) conduction. In the heaviest doped samples, such a conduction mechanism persists till to RT, without significantly prejudice the mobility values. This feature can have an interesting technological fall, because it guarantee a nearly temperature- independent carrier density, it being not affected by freeze-out effects. The usual transport mechanism occurring in the IB conduction is the nearest neighbor hopping: such a regime is effectively consistent with the resistivity temperature behavior of the lowest doped samples. In the heavier doped samples, however, a trend of the resistivity data compatible with a variable range hopping (VRH) conduction has been pointed out, here highlighted for the first time in p-type 4H-SiC. Even more: in the heaviest doped samples, and in particular, in those annealed by MWA, the temperature dependence of the resistivity data is consistent with a reduced dimensionality (2D) of the VRH conduction. In these samples, TEM investigation pointed out faulted dislocation loops in the basal plane, whose average spacing along the c-axis is comparable with the optimal length of the hops in the VRH transport. This result suggested the assignment of such a peculiar behavior to a kind of spatial confinement into a plane of the carrier hops. 3) Test device the p + -n junction In the last part of the work, the electrical properties of 4H-SiC diodes were also studied. In this case, a heavy Al + ion implantation was realized on n-type epilayers, according to the technological process applied for final devices. Good rectification properties was shown from these preliminary devices in their current-voltage characteristics. Admittance spectroscopy and deep level transient spectroscopy measurements showed the presence of electrically active defects other than the dopants ones, induced in the active region of the diodes by ion implantation. A critical comparison with the literature of these defects was performed. Preliminary to such an investigation, it was assessed the experimental set up for the admittance spectroscopy and current-voltage investigation and the automatic control of these measurements.
Resumo:
"Contract Now-65-0176c."
Resumo:
By using an alternative setup for photorefractive parametric oscillation in which wave mixing between the recording beams is avoided it has become possible to make more detailed comparisons with the space-charge wave theory. In the present paper we compare the experimental features of longitudinal parametric oscillation observed in a crystal of Bi12SiO20 with the theoretical predictions.
Resumo:
We investigate numerically the dependence of higher harmonics of the space-charge field on the detuning frequency between the pump waves, which form a running interference pattern. Bistability and hysteresis of harmonics are predicted for a contrast of the interference pattern m =(0.25-0.3). For contrasts m˜1 and small detuning frequencies we show the existence of a narrow resonance, connected with the nonlinear excitation of a slowly decreasing sequence of spatial harmonics. For experiments we use a BSO crystal in the optical configuration which avoids nonlinear optical distortions. The experimental data show good qualitative agreement with theory.
Resumo:
We investigate experimentally and theoretically the dependence of the amplitude of the spatial fundamental grating, created by a pair of coherent light beams while using the running grating technique [M.P. Petrov, S.I. Stepanov and A.V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Springer Series in Optical Sciences (Springer, 1991); P. Refregier, L. Solymar, H. Rajbenbach and J.P. Huignard, J. Appl. Phys. 58 (1985) 45], as a function of detuning frequency and beam ratio ß in photorefractive Bi12SiO20. It is shown that for ß > 0.05, in addition to the main peak in the frequency dependence of the amplitude, there is an additional peak of lower frequency which, as a rule, dominates the main peak. The position of the main peak depends on ß. The experimental results are in good agreement with the theoretical analysis and the general ideas about excitation and nonlinear interaction of weakly damped space-charge waves.
Resumo:
We investigate experimentally and theoretically the dependence of the amplitude of the spatial fundamental grating, created by a pair of coherent light beams while using the running grating technique [M.P. Petrov, S.I. Stepanov and A.V. Khomenko, Photorefractive Crystals in Coherent Optical Systems, Springer Series in Optical Sciences (Springer, 1991); P. Refregier, L. Solymar, H. Rajbenbach and J.P. Huignard, J. Appl. Phys. 58 (1985) 45], as a function of detuning frequency and beam ratio ß in photorefractive Bi12SiO20. It is shown that for ß > 0.05, in addition to the main peak in the frequency dependence of the amplitude, there is an additional peak of lower frequency which, as a rule, dominates the main peak. The position of the main peak depends on ß. The experimental results are in good agreement with the theoretical analysis and the general ideas about excitation and nonlinear interaction of weakly damped space-charge waves.