898 resultados para Electric motors, Induction


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dissertation to obtain the degree of Master in Electrical and Computer Engineering

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Design aspects of the Transversally Laminated Anisotropic (TLA) Synchronous Reluctance Motor (SynRM) are studied and the machine performance analysis compared to the Induction Motor (IM) is done. The SynRM rotor structure is designed and manufactured for a30 kW, four-pole, three-phase squirrel cage induction motor stator. Both the IMand SynRM were supplied by a sensorless Direct Torque Controlled (DTC) variablespeed drive. Attention is also paid to the estimation of the power range where the SynRM may compete successfully with a same size induction motor. A technicalloss reduction comparison between the IM and SynRM in variable speed drives is done. The Finite Element Method (FEM) is used to analyse the number, location and width of flux barriers used in a multiple segment rotor. It is sought for a high saliency ratio and a high torque of the motor. It is given a comparison between different FEM calculations to analyse SynRM performance. The possibility to take into account the effect of iron losses with FEM is studied. Comparison between the calculated and measured values shows that the design methods are reliable. A new application of the IEEE 112 measurement method is developed and used especially for determination of stray load losses in laboratory measurements. The study shows that, with some special measures, the efficiency of the TLA SynRM is equivalent to that of a high efficiency IM. The power factor of the SynRM at rated load is smaller than that of the IM. However, at lower partial load this difference decreases and this, probably, brings that the SynRM gets a better power factor in comparison with the IM. The big rotor inductance ratio of the SynRM allows a good estimating of the rotor position. This appears to be very advantageous for the designing of the rotor position sensor-less motor drive. In using the FEM designed multi-layer transversally laminated rotor with damper windings it is possible to design a directly network driven motor without degrading the motorefficiency or power factor compared to the performance of the IM.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

High dynamic performance of an electric motor is a fundamental prerequisite in motion control applications, also known as servo drives. Recent developments in the field of microprocessors and power electronics have enabled faster and faster movements with an electric motor. In such a dynamically demanding application, the dimensioning of the motor differs substantially from the industrial motor design, where feasible characteristics of the motor are for example high efficiency, a high power factor, and a low price. In motion control instead, such characteristics as high overloading capability, high-speed operation, high torque density and low inertia are required. The thesis investigates how the dimensioning of a high-performance servomotor differs from the dimensioning of industrial motors. The two most common servomotor types are examined; an induction motor and apermanent magnet synchronous motor. The suitability of these two motor types indynamically demanding servo applications is assessed, and the design aspects that optimize the servo characteristics of the motors are analyzed. Operating characteristics of a high performance motor are studied, and some methods for improvements are suggested. The main focus is on the induction machine, which is frequently compared to the permanent magnet synchronous motor. A 4 kW prototype induction motor was designed and manufactured for the verification of the simulation results in the laboratory conditions. Also a dynamic simulation model for estimating the thermal behaviour of the induction motor in servo applications was constructed. The accuracy of the model was improved by coupling it with the electromagnetic motor model in order to take into account the variations in the motor electromagnetic characteristics due to the temperature rise.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The most common reason for a low-voltage induction motor breakdown is a bearing failure. Along with the increasing popularity of modern frequency converters, bearing failures have become the most important motor fault type. Conditions in which bearing currents are likely to occur are generated as a side effect of fast du/dt switching transients. Once present, different types of bearing currents can accelerate the mechanical wear of bearings by causing deformation of metal parts in the bearing and degradation of the lubricating oil properties.The bearing current phenomena are well known, and several bearing current measurement and mitigation methods have been proposed. Nevertheless, in order to develop more feasible methods to measure and mitigate bearing currents, better knowledge of the phenomena is required. When mechanical wear is caused by bearing currents, the resulting aging impact has to be monitored and dealt with. Moreover, because of the stepwise aging mechanism, periodically executed condition monitoring measurements have been found ineffective. Thus, there is a need for feasible bearing current measurement methods that can be applied in parallel with the normal operation of series production drive systems. In order to reach the objectives of feasibility and applicability, nonintrusive measurement methods are preferred. In this doctoral dissertation, the characteristics and conditions of bearings that are related to the occurrence of different kinds of bearing currents are studied. Further, the study introduces some nonintrusive radio-frequency-signal-based approaches to detect and measure parameters that are associated with the accelerated bearing wear caused by bearing currents.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The design process of direct-driven permanent magnet synchronous machines (PMSMs) for a full electric 4 ´ 4 sports car is presented. The rotor structure of the machine consists of two permanent magnet layers embedded inside the rotor laminations thus resulting in some inverse saliency, where the q-axis inductance is larger than the d-axis one. An integer slot stator winding was selected to fully take advantage of the additional reluctance torque. The performance characteristics of the designed PMSMs were calculated by applying a twodimensional finite element method. Cross-saturation between the d- and q-axes was taken into account in the calculation of the synchronous inductances. The calculation results are validated by measurements.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Energy efficiency is an important topic when considering electric motor drives market. Although more efficient electric motor types are available, the induction motor remains as the most common industrial motor type. IEC methods for determining losses and efficiency of converter-fed induction motors were introduced recently with the release of technical specification IEC/TS 60034-2-3. Determining the induction motor losses with IEC/TS 60034-2-3 method 2-3-A and assessing the practical applicability of the method are the main interests of this study. The method 2-3-A introduces a specific test converter waveform to be used in the measurements. Differences between the induction motor losses with a test converter supply, and with a DTC converter supply are investigated. In the IEC methods, the tests are run at motor rated fundamental voltage, which, in practice, requires the frequency converter to be fed with a risen input voltage. In this study, the tests are run on both frequency converters with artificially risen converter input voltage, resulting in rated motor fundamental input voltage as required by IEC. For comparison, the tests are run with both converters on normal grid input voltage supply, which results in lower motor fundamental voltage and reduced flux level, but should be more relevant from practical point of view. According to IEC method 2-3-A, tests are run at rated motor load, and to ensure comparability of the results, the rated load is used in the grid-fed converter measurements, although motor is overloaded while producing the rated torque at reduced flux level. The IEC 2-3-A method requires also sinusoidal supply test results with IEC method 2-1-1B. Therefore, the induction motor losses with the recently updated IEC 60034-2-1 method 2-1-1B are determined at the motor rated voltage, but also at two lower motor voltages, which are according to the output fundamental voltages of the two network-supplied converters. The method 2-3-A was found to be complex to apply but the results were stable. According to the results, the method 2-3-A and the test converter supply are usable for comparing losses and efficiency of different induction motors at the operating point of rated voltage, rated frequency and rated load, but the measurements do not give any prediction of the motor losses at final application. One might therefore strongly criticize the method’s main principles. It seems, that the release of IEC 60034-2-3 as a technical specification instead of a final standard for now was justified, since the practical relevance of the main method is questionable.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The results of a study of the variation of three-phase induction machines' input impedance with frequency are proposed. A range of motors were analysed, both two-pole and four-pole, and the magnitude and phase of the input impedance were obtained over a wide frequency range of 20 Hz-1 MHz. For test results that would be useful in the prediction of the performance of induction machines during typical use, a test procedure was developed to represent closely typical three-phase stator coil connections when the induction machine is driven by a three-phase inverter. In addition, tests were performed with the motor's cases both grounded and not grounded. The results of the study show that all induction machines of the type considered exhibit a multiresonant impedance profile, where the input impedance reaches at least one maximum as the input frequency is increased. Furthermore, the test results show that the grounding of the motor's case has a significant effect on the impedance profile. Methods to exploit the input impedance profile of an induction machine to optimise machine and inverter systems are also discussed.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Condition monitoring is used to increase machinery availability and machinery performance, reducing consequential damage, increasing machine life, reducing spare parts inventories, and reducing breakdown maintenance. An efficient real time vibration measurement and analysis instruments is capable of providing warning and predicting faults at early stages. In this paper, a new methodology for the implementation of vibration measurement and analysis instruments in real time based on circuit architecture mapped from a MATLAB/Simulink model is presented. In this study, signal processing applications such as FIR filters and fast Fourier transform are treated as systems, which are implemented in hardware using a system generator toolbox, which translates a Simulink model in a hardware description language - HDL for FPGA implementations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The induction motors are largely used in several industry sectors. The dimensioning of an induction motor has still been inaccurate because in most of the cases the load behavior in its shaft is completely unknown. The proposal of this paper is to use artificial neural networks as tool for dimensioning of induction motors rather than conventional methods, which use classical identification techniques and mechanical load modeling. Simulation results are also presented to validate the proposed approach.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Three-Phase Induction Motors (TIM) and Arc Welding Machines (AWM) are loads of special behavior widely used in industrial and commercial installations, and therefore may contribute significantly to the deterioration of the quality of energy supplied by utilities. This paper proposes a modeling in constant power of the unbalanced TIM starting using Genetic Algorithm (GA) and AWM short-circuit based on their statics characteristics curves. The proposed models are compared with the conventional models in the literature. The results showed the good performance of the proposed models, allowing a more precise analysis of the real requests of these loads.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Many electronic drivers for the induction motor control are based on sensorless technologies. The proposal of this work Is to present an alternative approach of speed estimation, from transient to steady state, using artificial neural networks. The inputs of the network are the RMS voltage, current and speed estimated of the induction motor feedback to the input with a delay of n samples. Simulation results are also presented to validate the proposed approach. © 2006 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of this paper is to present a simple method for determining the high frequency parameters of a three-phase induction motor to be used in studies involving variable speed drives with PWM three-phase inverters, in which it is necessary to check the effects caused to the motor by the electromagnetic interference, (EMI) in the differential mode, as well as in the common mode. The motor parameters determination is generally performed in adequate laboratories using accurate instruments, such as very expensive RLC bridges. The method proposed here consists in the identification of the motor equivalent electrical circuit parameters in rated frequency and in high frequency through characteristic tests in the laboratory, together with the use of characteristic equations and curves, shown in the references to be mentioned for determining the motor high frequency parasite capacitances and also through system simulations using dedicated software, like Pspice, determining the characteristic waveforms involved in the differential and common mode phenomena, comparing and validating the procedure through published papers [01].

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work presents an alternative approach based on neural network method in order to estimate speed of induction motors, using the measurement of primary variables such as voltage and current. Induction motors are very common in many sectors of the industry and assume an important role in the national energy policy. The nowadays methodologies, which are used in diagnosis, condition monitoring and dimensioning of these motors, are based on measure of the speed variable. However, the direct measure of this variable compromises the system control and starting circuit of an electric machinery, reducing its robustness and increasing the implementation costs. Simulation results and experimental data are presented to validate the proposed approach. © 2003-2012 IEEE.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This paper presents two diagnostic methods for the online detection of broken bars in induction motors with squirrel-cage type rotors. The wavelet representation of a function is a new technique. Wavelet transform of a function is the improved version of Fourier transform. Fourier transform is a powerful tool for analyzing the components of a stationary signal. But it is failed for analyzing the non-stationary signal whereas wavelet transform allows the components of a non-stationary signal to be analyzed. In this paper, our main goal is to find out the advantages of wavelet transform compared to Fourier transform in rotor failure diagnosis of induction motors.