925 resultados para Electric Car
Resumo:
Road crashes contribute to a significant amount of child mortality and morbidity in Australia. In fact, passenger injuries contribute to the majority of child crash road trauma. A number of factors contribute to child injury and death in motor vehicles, including inappropriate seating position, inappropriate choice of restraint, and incorrect installation and use of child restraints. Prior to March 2010, child restraint legislation in Queensland only required children twelve months and younger to be seated in a properly adjusted and fastened child restraint. This legislation left older infants and young children potentially suboptimally protected. From March 2010, new legislation specified seating position and type of child restraint required, depending on the age of the child. This research was underpinned by the Health Belief Model (HBM), which explores health related behaviour, behaviour change, environmental factors influencing behaviour change (including legislative changes) and is flexible enough to be used in relation to parents' health practices for their children, rather than parent health directly. This thesis investigates the extent to which the changes to child restraint legislation have led parents in regional areas of Queensland to use appropriate restraint practices for their children and determines the extent to which the constructs of the HBM, parental perceptions, barriers and environmental factors contribute to the appropriateness of child seating and restraint use. Study One included three sets of observations taken in two regional cities of Queensland prior to the legislative amendment, during an educative period of six months, and after the enactment of the legislation. Each child's seating position and restraint type were recorded. Results showed that the proportion of children observed occupying the front seat decreased by 15.6 per cent with the announcement the legislation. There was no decrease in front seat use at the enactment of the legislation. The proportion of children observed using dedicated child restraints increased by 8.8 per cent with the announcement of the legislation when there was one child in the vehicle. Further, there was a 10.1 per cent increase in the proportion of children observed using a seat belt that fit with the announcement when there was one child in the vehicle and with the enactment of the legislation regardless of the number of children in the vehicle (21.8 per cent for one child, 39.7 per cent for two children and 40.2 per cent for three or more children). Study Two comprised initial intercept interviews, later followed up by telephone, with parents with children aged eight years and younger at the announcement and telephone interviews at the enactment of the legislation in one regional city in Queensland. Parents reported their child restraint practices, and opinions, knowledge and understanding of the requirements of the new legislation. Parent responses were analysed in terms of the constructs in the HBM. When asked which seating position their child 'usually' used, parents reported child front seat use was nil (0.0 per cent) and did not change with the enactment of the legislative amendment. However, when parents were asked whether they allowed children to use the front seat at some point within the six months prior to the interview, reported child front seat use was 7 (5.4 per cent) children at T2 and 10 (9.6 per cent) at T3. Reported use of age-appropriate child restraints did not increase with the enactment of the legislation (p = 0.77, ns). Parents reported restraint practices were classed as either appropriate or inappropriate. Parents who reported appropriate restraint practices were those whose children were sitting in optimal restraints and seating positions for their age according to the requirements of the legislation. Parents who reported inappropriate restraint practices were those who had one or more children who were suboptimally restrained or seated for their age according to the requirements of the legislation. Neither parents' perceptions about their susceptibility of being in a crash nor the likelihood of severity of child injury if involved in a crash yielded significant differences in the appropriateness of reported parent restraint practices over time with the enactment of the legislation. A trend in the data suggested parents perceived a benefit to using appropriate restraint practices was to avoid fines and demerit points. Over 75 per cent of parents who agreed that child restraints provide better protection for children than an adult seat belt reported appropriately seating and restraining their children (2 (1) = 8.093, p<.05). The self-efficacy measure regarding parents' confidence in installing a child restraint showed a significant association with appropriate parental restraint practices (2 (1) = 7.036, p<.05). Results suggested that some parents may have misinterpreted the announcement of the legislative amendment as the announcement of the enforcement of the legislation instead. Some parents who correctly reported details of the legislation did not report appropriate child restraint practices. This finding shows that parents' knowledge of the legislative amendment does not necessarily have an impact on their behaviour to appropriately seat and restrain children. The results of these studies have important implications for road safety and the prevention of road-related injury and death to children in Queensland. Firstly, parents reported feeling unsure of how to install restraints, which suggests that there may be children travelling in restraints that have not been installed correctly, putting them at risk. Interventions to alert and encourage parents to seek advice when unsure about the correct installation of child restraints could be considered. Secondly, some parents in this study although they were using the most appropriate restraint for their children, reported using a type that was not the most appropriate restraint for the child's age according to the legislation. This suggests that intervention may be effective in helping parents make a more accurate choice of the most appropriate type of restraint to use with children, especially as the child ages and child restraint requirements change. Further research could be conducted to ascertain the most effective methods of informing and motivating parents to use the most appropriate restraints and seating positions for their children, as these results show a concerning disparity between reported restraint practices and those that were observed.
Resumo:
The University of Queensland UltraCommuter concept is an ultra- light, low-drag, hybrid-electric sports coupe designed to minimize energy consumption and environmental impact while enhancing the performance, styling, features and convenience that motorists enjoy. This paper presents a detailed simulation study of the vehicle's performance and fuel economy using ADVISOR, including a detailed description of the component models and parameters assumed. Results from the study include predictions of a 0-100 kph acceleration time of ≺9s, and top speed of 170 kph, an electrical energy consumption of ≺67 Wh/km in ZEV mode and a petrol-equivalent fuel consumption of ≺2.5 L/100 km in charge-sustaining HEV mode. Overall, the results of the ADVISOR modelling confirm the UltraCommuter's potential to achieve high performance with high efficiency, and the authors look forward to a confirmation of these estimates following completion of the vehicle.
Resumo:
This paper presents a new simplified parametric analysis technique for the design of fuel cell and hybrid-electric vehicles. The technique utilizes a comprehensive set of ∼30 parameters to fully characterize the vehicle platform, powertrain components, vehicle performance requirements and driving conditions. It is best applied to the sizing of powertrain components and prediction of energy consumption in a vehicle. This new parametric technique makes a good complement to existing vehicle simulation software packages and therefore represents a potentially valuable tool for the hybrid vehicle designer.
Resumo:
Investigates the braking performance requirements of the UltraCommuter, a lightweight series hybrid electric vehicle currently under development at the University of Queensland. With a predicted vehicle mass of 600 kg and two in-wheel motors each capable of 500 Nm of peak torque, decelerations up to 0.46 g are theoretically possible using purely regenerative braking. With 99% of braking demands less than 0.35 g, essentially all braking can be regenerative. The wheel motors have sufficient peak torque capability to lock the rear wheels in combination with front axle braking, eliminating the need for friction braking at the rear. Emergency braking levels approaching 1 g are achieved by supplementation with front disk brakes. This paper presents equations describing the peak front and rear axle braking forces which occur under straight line braking, including gradients. Conventionally, to guarantee stability, mechanical front/rear proportioning of braking effort ensures that the front axle locks first. In this application, all braking is initially regenerative at the rear, and an adaptive ''by-wire'' proportioning system presented ensures this stability requirement is still satisfied. Front wheel drive and all wheel drive systems are also discussed. Finally, peak and continuous performance measures, not commonly provided for friction brakes, are derived for the UltraCommuter's motor capability and range of operation.
Resumo:
The pulse power characteristics of ultracapacitors appear well suited to electric vehicle applications, where they may supply the peak power more efficiently than the battery, and can prevent excessive over sizing of the battery pack due to peak power demands. Operation of ultracapacitors in battery electric vehicles is examined for possible improvements in system efficiency, vehicle driving range, battery pack lifetime, and potential reductions in system lifecycle cost. The lifecycle operation of these ultracapacitors is simulated using custom-built, dynamic simulation code constructed in Matlab. Despite apparent gains in system efficiency and driving range, the results strongly suggest that the inclusion of ultracapacitors in the electric vehicle does not make sense from a lifecycle cost perspective. Furthermore, a comparison with results from earlier work shows that this outcome is highly dependant upon the efficiency and cost of the battery under consideration. However, it is likely that the lifecycle cost benefits of ultracapacitors in these electric vehicles would be, at most, marginal and do not justify the additional capital costs and system complexity that would be incurred in the vehicle
Resumo:
The pulse power characteristics of ultracapacitors appear well suited to electric vehicle applications, where they may supply the peak power more efficiently than the battery, and can prevent excessive over sizing of the battery pack due to peak power demands. Operation of ultracapacitors in battery electric vehicles (BEVs) is examined for possible improvements in system efficiency, vehicle driving range, battery pack lifetime, and potential reductions in system lifecycle cost. The lifecycle operation of these ultracapacitors is simulated using a custom-built, dynamic simulation code constructed in Matlab. Despite apparent gains in system efficiency and driving range, the lifecycle cost benefits as simulated appear to be marginal, and are heavily influenced by the incremental cost of power components. However, additional factors are identified which, in reality, will drive ultracapacitors towards viability in electric vehicle applications.
Resumo:
The key to reducing cost of electric vehicles is integration. All too often systems such as the motor, motor controller, batteries and vehicle chassis/body are considered as separate problems. The truth is that a lot of trade-offs can be made between these systems, causing an overall improvement in many areas including total cost. Motor controller and battery cost have a relatively simple relationship; the less energy lost in the motor controller the less energy that has to be carried in the batteries, hence the lower the battery cost. A motor controller’s cost is primarily influenced by the cost of the switches. This paper will therefore present a method of assessing the optimal switch selection on the premise that the optimal switch is the one that produces the lowest system cost, where system cost is the cost of batteries + switches.
Resumo:
This paper presents a review of existing and current developments and the analysis of Hybrid-Electric Propulsion Systems (HEPS) for small fixed-wing Unmanned Aerial Vehicles (UAVs). Efficient energy utilisation on an UAV is essential to its functioning, often to achieve the operational goals of range, endurance and other specific mission requirements. Due to the limitations of the space available and the mass budget on the UAV, it is often a delicate balance between the onboard energy available (i.e. fuel) and achieving the operational goals. One technology with potential in this area is with the use of HEPS. In this paper, information on the state-of-art technology in this field of research is provided. A description and simulation of a parallel HEPS for a small fixed-wing UAV by incorporating an Ideal Operating Line (IOL) control strategy is described. Simulation models of the components in a HEPS were designed in the MATLAB Simulink environment. An IOL analysis of an UAV piston engine was used to determine the most efficient points of operation for this engine. The results show that an UAV equipped with this HEPS configuration is capable of achieving a fuel saving of 6.5%, compared to the engine-only configuration.
Resumo:
Plug-in electric vehicles will soon be connected to residential distribution networks in high quantities and will add to already overburdened residential feeders. However, as battery technology improves, plug-in electric vehicles will also be able to support networks as small distributed generation units by transferring the energy stored in their battery into the grid. Even though the increase in the plug-in electric vehicle connection is gradual, their connection points and charging/discharging levels are random. Therefore, such single-phase bidirectional power flows can have an adverse effect on the voltage unbalance of a three-phase distribution network. In this article, a voltage unbalance sensitivity analysis based on charging/discharging levels and the connection point of plug-in electric vehicles in a residential low-voltage distribution network is presented. Due to the many uncertainties in plug-in electric vehicle ratings and connection points and the network load, a Monte Carlo-based stochastic analysis is developed to predict voltage unbalance in the network in the presence of plug-in electric vehicles. A failure index is introduced to demonstrate the probability of non-standard voltage unbalance in the network due to plug-in electric vehicles.
Resumo:
Pilot cars are used in one-lane two-way work zones to guide traffic and keep their speeds within posted limits. While many studies have examined the effectiveness of measures to reduce vehicle speeds in work zones, little is known about the reductions achievable through the use of pilot cars. This paper examines the effectiveness of a pilot car in reducing travel speeds in a rural highway work zone in Queensland, Australia. Analysis of speed data covering a period of five days showed that a pilot car reduced average speeds at the treatment location, but not downstream. The proportion of vehicles speeding through the activity area was also reduced, particularly those traveling at 10 km/h or more above the posted limit. Motorists were more likely to speed during the day, under a 40 kh/h limit, when traffic volumes were higher and when there were fewer vehicles in the traffic stream. Medium vehicles were less likely to speed in the presence of a pilot car than light vehicles. To maximize these benefits, it is necessary to ensure that the pilot car itself is not speeding.
Resumo:
There are currently more than 400 cities operating bike share programs. Purported benefits of bike share programs include flexible mobility, physical activity, reduced congestion, emissions and fuel use. Implicit or explicit in the calculation of program benefits are assumptions regarding the modes of travel replaced by bike share journeys. This paper examines the degree to which car trips are replaced by bike share, through an examination of survey and trip data from bike share programs in Melbourne, Brisbane, Washing, D.C., London, and Minneapolis/St. Paul. A secondary and unique component of this analysis examines motor vehicle support services required for bike share fleet rebalancing and maintenance. These two components are then combined to estimate bike share’s overall contribution to changes in vehicle kilometres traveled. The results indicate that the estimated mean reduction in car use due to bike share is at least twice the distance covered by operator support vehicles, with the exception of London, in which the relationship is reversed, largely due to a low car mode substitution rate. As bike share programs mature, evaluation of their effectiveness in reducing car use may become increasingly important. This paper reveals that by increasing the convenience of bike share relative to car use and by improving perceptions of safety, the capacity of bike share programs to reduce vehicle trips and yield overall net benefits will be enhanced. Researchers can adapt the analytical approach proposed in this paper to assist in the evaluation of current and future bike share programs.
Resumo:
Solutions to remedy the voltage disturbances have been mostly suggested only for industrial customers. However, not much research has been done on the impact of the voltage problems on residential facilities. This paper proposes a new method to reduce the effect of voltage dip and swell in smart grids equipped by communication systems. To reach this purpose, a voltage source inverter and the corresponding control system are employed. The behavior of a power system during voltage dip and swell are analyzed. The results demonstrate reasonable improvement in terms of voltage dip and swell mitigation. All simulations are implemented in MATLAB/Simulink environment.
Resumo:
This paper presents an analytical method to analyze the effect of X to R ratio as well as impedance value of branches on observability of a network based on un-decoupled formulation of state estimation (SE) and null space of matrices. The results showed that the X to R ratio of branches had no effect on the observability of networks. In addition, it was shown that observability of some networks was affected by impedance values while some others were not affected. In addition, for branch observability analysis of radial network, a simple and quick method is developed. Illustrative examples of the network under transmission and distribution voltages demonstrate the effectiveness of the proposed methods.
Resumo:
The experiences of the loss reduction projects in electric power distribution companies (EPDCs) of Iran are presented. The loss reduction methods, which are proposed individually by 14 EPDCs, corresponding energy saving (ES), Investment costs (IC), and loss rate reductions are provided. In order to illustrate the effectiveness and performance of the loss reduction methods, three parameters are proposed as energy saving per investment costs (ESIC), energy saving per quantity (ESPQ), and investment costs per quantity (ICPQ). The overall ESIC of 14 EPDC as well as individual average and standard deviation of the EISC for each method is presented and compared. In addition, the average and standard deviation of the ESPQs and ICPQs for the loss reduction methods, individually, are provided and investigated. These parameters are useful for EPDCs that intend to reduce the electric losses in distribution networks as a benchmark and as a background in the planning purposes.
Resumo:
In this paper, a loss reduction planning in electric distribution networks is presented based on the successful experiences in distribution utilities of IRAN and some developed countries. The necessary technical and economical parameters of planning are calculated from related projects in IRAN. Cost, time, and benefits of every sub-program including seven loss reduction approaches are determined. Finally, the loss reduction program, the benefit per cost, and the return of investment in optimistic and pessimistic conditions are introduced.