852 resultados para Efficiency Curves
Resumo:
The photochemical efficiency of symbiotic dinoflagellates within the tissues of two reef-building corals in response to normal and excess irradiance at wafer temperatures < 30 C were investigated using pulse amplitude modulated (PAM) chlorophyll fluorescence techniques, Dark-adapted F-v/F-m showed clear diurnal changes, decreasing to a low at solar noon and increasing in the afternoon. However, F-v/F-m also drifted downwards at night or in prolonged darkness, and increased rapidly during the early morning twilight. This parameter also increased when the oxygen concentration of the wafer holding the corals was increased. Such changes have not been described previously, and most probably reflect state transition's associated with PQ pool reduction via chlororespiration. These unusual characteristics may be a feature of an endosymbiotic environment, reflective of the well-documented night-time tissue hypoxia that occurs in corals. F-v/F-m decreased to 0.25 in response to full sunlight in shade-acclimated (shade) colonies of Stylophora pistillata, which is considerably lower than in light-acclimated (sun) colonies. In sun colonies, the reversible decrease in F-v/F-m was caused by a lowering of F-m and F-o suggesting photoprotection and no lasting damage. The decrease in F-v/F-m, however, was caused by a decrease in F-m and an increase in F-o in shade colonies suggesting photoinactivation and long-term cumulative photoinhibition. Shade colonies rapidly lost their symbiotic algae (bleached) during exposure to full sunlight. This study is consistent with the hypothesis that excess light leads to chronic damage of symbiotic dinoflagellates and their eventual removal from reef-building corals. It is significant that this can occur with high light conditions alone.
Resumo:
Qualitative data analysis (QDA) is often a time-consuming and laborious process usually involving the management of large quantities of textual data. Recently developed computer programs offer great advances in the efficiency of the processes of QDA. In this paper we report on an innovative use of a combination of extant computer software technologies to further enhance and simplify QDA. Used in appropriate circumstances, we believe that this innovation greatly enhances the speed with which theoretical and descriptive ideas can be abstracted from rich, complex, and chaotic qualitative data. © 2001 Human Sciences Press, Inc.
Resumo:
The principal aim of this paper is to measure the amount by which the profit of a multi-input, multi-output firm deviates from maximum short-run profit, and then to decompose this profit gap into components that are of practical use to managers. In particular, our interest is in the measurement of the contribution of unused capacity, along with measures of technical inefficiency, and allocative inefficiency, in this profit gap. We survey existing definitions of capacity and, after discussing their shortcomings, we propose a new ray economic capacity measure that involves short-run profit maximisation, with the output mix held constant. We go on to describe how the gap between observed profit and maximum profit can be calculated and decomposed using linear programming methods. The paper concludes with an empirical illustration, involving data on 28 international airline companies. The empirical results indicate that these airline companies achieve profit levels which are on average US$815m below potential levels, and that 70% of the gap may be attributed to unused capacity. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Current shrimp pond management practices generally result in elevated concentrations of nutrients, suspended solids, bacteria and phytoplankton compared with the influent water. Concerns about adverse environmental impacts caused by discharging pond effluent directly into adjacent waterways have prompted the search for cost-effective methods of effluent treatment. One potential method of effluent treatment is the use of ponds or raceways stocked with plants or animals that act as natural biofilters by removing waste nutrients. In addition to improving effluent water quality prior to discharge, the use of natural biofilters provides a method for capturing otherwise wasted nutrients. This study examined the potential of the native oyster, Saccostrea commercialis (Iredale and Roughley) and macroalgae, Gracilaria edulis (Gmelin) Silva to improve effluent water quality from a commercial Penaeus japonicus (Bate) shrimp farm, A system of raceways was constructed to permit recirculation of the effluent through the oysters to maximize the filtration of bacteria, phytoplankton and total suspended solids. A series of experiments was conducted to test the ability of oysters and macroalgae to improve effluent water quality in a flow-through system compared with a recirculating system. In the flow-through system, oysters reduced the concentration of bacteria to 35% of the initial concentration, chlorophyll a to 39%, total particulates (2.28-35.2 mum) to 29%, total nitrogen to 66% and total phosphorus to 56%. Under the recirculating flow regime, the ability of the oysters to improve water quality was significantly enhanced. After four circuits, total bacterial numbers were reduced to 12%, chlorophyll a to 4%, and total suspended solids to 16%. Efforts to increase biofiltration by adding additional layers of oyster trays and macroalgae-filled mesh bags resulted in fouling of the lower layers causing the death of oysters and senescence of macroalgae. Supplementary laboratory experiments were designed to examine the effects of high effluent concentrations of suspended particulates on the growth and condition of oysters and macroalgae. The results demonstrated that high concentrations of particulates inhibited growth and reduced the condition of oysters and macroalgae. Allowing the effluent to settle before biofiltration improved growth and reduced signs of stress in the oysters and macroalgae. A settling time of 6 h reduced particulates to a level that prevented fouling of the oysters and macroalgae.
Resumo:
We determine the number of F-q-rational points of a class of Artin-Schreier curves by using recent results concerning evaluations of some exponential sums. In particular, we determine infinitely many new examples of maximal and minimal plane curves in the context of the Hasse-Weil bound. (C) 2002 Elsevier Science (USA).
Resumo:
The orthodoxy of supply chain management (SCM) emphasises competitive advantage through increased operational efficiency and market responsiveness from production and distribution processes into the hands of consumers. It anticipates that future competition will be between chains rather than between firms. While well established in other industry sectors, the SCM concept is newly developed in the Australian agri-food sector. Critical review of the concept has identified key issues of power among channel members, processes of chain initiation and innovation, and the inability of SCM to offer a viable business strategy for some firms. Building on those insights, this paper examines the supply chain concept for horticulture. Horticultural products are characterised by perishability, heterogeneity and lags in production response to market signals. Producers’ profits are vulnerable to quantity, timing of supply and product specification. Many supply chains in smaller industries are loose, fragmented, interwoven, unstable and unique! Firms operating within these environments need an astute understanding of the chains, the hierarchy of channel members and their relative position. Effective business strategies – for individual firms and supply chains - need to be developed and redeveloped to accommodate the dynamic nature of horticulture. Two case studies are discussed as contributions to this early stage of the theoretical development of supply chain management. The SCM concept also has implications for horticultural researchers, involving a wider range of industry stakeholders, technical problems and research skills. As for business management, the usefulness of the concept will depend on its capacity to increase responsiveness to customers’ preferences and customer value.
Resumo:
A major challenge faced by today's white clover breeder is how to manage resources within a breeding program. It is essential to utilise these resources with sufficient flexibility to build on past progress from conventional breeding strategies, but also take advantage of emerging opportunities from molecular breeding tools such as molecular markers and transformation. It is timely to review white clover breeding strategies. This background can then be used as a foundation for considering how to continue conventional plant improvement activities and complement them with molecular breeding opportunities. In this review, conventional white clover breeding strategies relevant to the Australian dryland target population environments are considered. Attention is given to: (i) availability of genetic variation, (ii) characterisation of germplasm collections, (iii) quantitative models for estimation of heritability, (iv) the role of multi-environment trials to accommodate genotype-by-environment interactions, (v) interdisciplinary research to understand adaptation to dryland environments, (vi) breeding and selection strategies, and (vii) cultivar structure. Current achievements in biotechnology with specific reference to white clover breeding in Australia are considered, and computer modelling of breeding programs is discussed as a useful integrative tool for the joint evaluation of conventional and molecular breeding strategies and optimisation of resource use in breeding programs. Four areas are identified as future research priorities: (i) capturing the potential genetic diversity among introduced accessions and ecotypes that are adapted to key constraints such as summer moisture stress and the use of molecular markers to assess the genetic diversity, (ii) understanding the underlying physiological/morphological root and shoot mechanisms involved in water use efficiency of white clover, with the objective of identifying appropriate selection criteria, (iii) estimation of quantitative genetic parameters of important morphological/physiological attributes to enable prediction of response to selection in target environments, and (iv) modelling white clover breeding strategies to evaluate the opportunities for integration of molecular breeding strategies with conventional breeding programs.
Resumo:
Leaf water relations responses to limited water supply were determined in 7-month-old plants of a dry inland provenance of Eucalyptus argophloia Blakely and in a humid coastal provenance (Gympie) and a dry inland provenance (Hungry Hills) of Eucalyptus cloeziana F. Muell. Each provenance of E. cloeziana exhibited a lower relative water content at the turgor loss point, a lower apoplastic water content, a smaller ratio of dry mass to turgid mass and a lower bulk modulus of elasticity than the single provenance of E. argophloia. Osmotic potential at full turgor and water potential at the turgor loss point were significantly lower in E. argophloia and the inland provenance of E. cloeziana than in the coastal provenance of E. cloeziana. There was limited osmotic adjustment in response to soil drying in E. cloeziana, but not in E. argophloia. Between-species differences in water relations parameters were larger than those between the E. cloeziana provenances. Both E. cloeziana provenances maintained turgor under moderate water stress through a combination of osmotic and elastic adjustments. Eucalyptus argophloia had more rigid cell walls and reached lower water potentials with less reduction in relative water content than either of the E. cloeziana provenances, thereby enabling it to extract water from dryer soils.
Resumo:
Effects of soil water availability on transpiration efficiency (WUET), instantaneous water use efficiency (WUEi) and carbon isotope composition (delta(13)C) were investigated in 7-month-old plants of humid coastal (Gympie) and dry inland ( Hungry Hills) provenances of Eucalyptus cloeziana F. Muell. and in a dry inland provenance of E. argophloia Blakely (Chinchilla), supplied with 100 (W-100), 70 (W-70) and 50% (W-50) of their water requirements. At W-100, WUET of the three provenances were not significantly different but as available soil moisture decreased, E. argophloia produced greater biomass and demonstrated significantly higher WUET than either E. cloeziana provenance. Midday WUEi was not significantly affected by watering regime within each provenance but was lowest in E. argophloia. A decrease in soil water availability caused a consistent increase in delta(13)C values in all three provenances; however, delta(13)C values of E. argophloia in all three water regimes were significantly lower than those of E. cloeziana provenances, which did not differ significantly from each other. For all three provenances, delta(13)C was not correlated with WUEi but height and root collar diameter were negatively correlated to delta(13)C. There was little evidence of differences in delta(13)C, WUET and WUEi between E. cloeziana provenances but clear differences between E. cloeziana and E. argophloia. The high WUET, low WUEi and low delta(13)C for E. argophloia may have implications in the selection of Eucalyptus provenances for commercial forestry in low-rainfall regions.
Resumo:
O comportamento da corrosão e inibição à corrosão dos aços carbono AISI 1010, inox AISI 316 e duplex UNS S31803 foi estudado em meio de solução de íons cloreto à 3,0% (m/v), na ausência e presença do benzimidazol e imidazol como inibidores. A caracterização química e morfológica dos aços foi realizada por meio das técnicas de espectrometria de emissão ótica, difração de raios X (DRX), microscopia ótica, microscopia eletrônica de varredura (MEV) e energia dispersiva de raios X (EDX). As análises eletroquímicas foram realizadas através das técnicas de polarização potenciodinâmica e espectroscopia de impedância eletroquímica. As análises de DRX e de metalografia mostraram as fases presentes em cada aço, sendo o aço AISI 1010 composto pela fase ferrita, o aço AISI 316 pelas fases de FeNi e Cr e o aço UNS S31803 pelas fases austenita e ferrita. Além disso, a metalografia e as análises de MEV e EDX permitiram identificar regiões e certos elementos presentes nos aços que propiciam à ocorrência da corrosão, tais como inclusões. Os inibidores foram testados em diferentes concentrações (25 ppm, 50 ppm, 100 ppm, 500 ppm e 1000 ppm) para os três aços, através das curvas de polarização e impedância eletroquímica, e verificou-se que para todas as concentrações houve aumento da resistência à corrosão dos aços. Pelas curvas de polarização verificou-se que o benzimidazol proporcionou aos aços AISI 1010, AISI 316 e UNS S31803, eficiências de inibição de cerca de 51%, 71% e 75%, respectivamente. Enquanto que o imidazol apresentou eficiência de cerca de 73%, 95% e 86%, respectivamente. Os resultados de impedância eletroquímica mostraram que as eficiências de inibição do benzimidazol foram de aproximadamente 52%, 73% e 71%, respectivamente, para os aços AISI 1010, AISI 316 e UNS S31803. E por sua vez, o imidazol apresentou eficiências de aproximadamente 96% para os aços AISI 1010 e AISI 316 e 85% para o aço UNS S31803. O teste de perda de massa mostrou que para o aço AISI 1010 tanto o benzimidazol quanto e o imidazol inibiram a corrosão, sendo que reduziram a corrosão em cerca de 17% e 24%, respectivamente. Nas análises das curvas de polarização em estudos com a água do mar observou-se que os inibidores foram menos eficientes do que em meio de solução de cloreto. O benzimidazol obteve eficiências de cerca de 14%, 50% e 33%, respectivamente, para os aços AISI 1010, AISI 316 e UNS S31803. Enquanto que o imidazol apresentou eficiências de aproximadamente 21%, 59% e 34%, respectivamente. Em todas as análises eletroquímicas e análise de perda de massa, o imidazol se mostrou o melhor inibidor para os aços estudados.
Resumo:
Fertilizer recommendation to most agricultural crops is based on response curves. Such curves are constructed from field experimental data, obtained for a particular condition and may not be reliable to be applied to other regions. The aim of this study was to develop a Lime and Fertilizer Recommendation System for Coconut Crop based on the nutritional balance. The System considers the expected productivity and plant nutrient use efficiency to estimate nutrient demand, and effective rooting layer, soil nutrient availability, as well as any other nutrient input to estimate the nutrient supply. Comparing the nutrient demand with the nutrient supply the System defines the nutrient balance. If the balance for a given nutrient is negative, lime and, or, fertilization is recommended. On the other hand, if the balance is positive, no lime or fertilizer is needed. For coconut trees, the fertilization regime is divided in three stages: fertilization at the planting spot, band fertilization and fertilization at the production phase. The data set for the development of the System for coconut trees was obtained from the literature. The recommendations generated by the System were compared to those derived from recommendation tables used for coconut crop in Brazil. The main differences between the two procedures were for the P rate applied in the planting hole, which was higher in the proposed System because the tables do not pay heed to the pit volume, whereas the N and K rates were lower. The crop demand for K is very high, and the rates recommended by the System are superior to the table recommendations for the formation and initial production stage. The fertilizer recommendations by the System are higher for the phase of coconut tree growth as compared to the production phase, because greater amount of biomass is produced in the first phase.
Resumo:
Studies on nutritional efficiency of phosphorus in conilon coffee plants are important tools to unravel the high limitation that natural low levels of this nutrient in soil impose to these species cultivars. Therefore, this study aimed at evaluating the nutritional efficiency and the response to phosphorus of conilon coffee clones. Plants were managed during 150 days in pots containing 10 dm³ of soil, in greenhouse. A factorial scheme 13 x 2 was used, with three replications, being the factors: 13 clones constituting the clonal cultivar "Vitória Incaper 8142" and two levels of phosphate fertilization (0% and 150% of the P2O5 usualy recommended), in a completely randomized design (CRD). The results indicate a differentiated response of dry matter production and of phosphorus content on each level of phosphate fertilization for the conilon coffee clones and that CV-04, CV-05 and CV-08 clones are nutritionally efficient and responsive to the phosphate fertilization.