393 resultados para Effectors


Relevância:

10.00% 10.00%

Publicador:

Resumo:

提出了基于水下作业系统阻抗力控制的水下矩形围壁定位方法。水下作业系统末端执行器跟踪期望运动轨迹,通过与水下矩形围壁环境表面接触力反馈信息的变化获得与环境接触的特殊点,计算得到矩形围壁环境相对水下作业系统的位姿。以带有三自由度机械手的水下作业系统为例进行水下矩形围壁目标表面恒力跟踪的计算机仿真,仿真结果表明定位方法可以很好的获得矩形围壁环境的位姿,控制策略具有很好的表面跟踪和力控制能力。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

针对双机械臂搬运单一物体的协调操作系统,提出了一类有效的最优关节轨迹规划方法。该法在机械臂的关节空间内采用分段归一化的无因次量,将其运动轨迹与运动时间解耦,运用非线性规划法优化无因次量运动轨迹。将所规划的无因次轨迹方程作为机械臂产生实际运动轨迹的发生器,由双臂的运动学约束条件和爪端所允许的不协调误差及各手臂的取道点,即可快速生成所期望的系统运动轨迹。为保证双臂能充分协调运动,提出了调整因子的概念。

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Projeto de Pós-Graduação/Dissertação apresentado à Universidade Fernando Pessoa como parte dos requisitos para obtenção do grau de Mestre em Ciências Farmacêuticas

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lacticin 3147, enterocin AS-48, lacticin 481, variacin, and sakacin P are bacteriocins offering promising perspectives in terms of preservation and shelf-life extension of food products and should find commercial application in the near future. The studies detailing their characterization and bio-preservative applications are reviewed. Transcriptomic analyses showed a cell wall-targeted response of Lactococcus lactis IL1403 during the early stages of infection with the lytic bacteriophage c2, which is probably orchestrated by a number of membrane stress proteins and involves D-alanylation of membrane lipoteichoic acids, restoration of the physiological proton motive force disrupted following bacteriophage infection, and energy conservation. Sequencing of the eight plasmids of L. lactis subsp. cremoris DPC3758 from raw milk cheese revealed three anti-phage restriction/modification (R/M) systems, immunity/resistance to nisin, lacticin 481, cadmium and copper, and six conjugative/mobilization regions. A food-grade derivative strain with enhanced bacteriophage resistance was generated via stacking of R/M plasmids. Sequencing and functional analysis of the four plasmids of L. lactis subsp. lactis biovar. diacetylactis DPC3901 from raw milk cheese revealed genes novel to Lactococcus and typical of bacteria associated with plants, in addition to genes associated with plant-derived lactococcal strains. The functionality of a novel high-affinity regulated system for cobalt uptake was demonstrated. The bacteriophage resistant and bacteriocin-producing plasmid pMRC01 places a metabolic burden on lactococcal hosts resulting in lowered growth rates and increased cell permeability and autolysis. The magnitude of these effects is strain dependent but not related to bacteriocin production. Starters’ acidification capacity is not significantly affected. Transcriptomic analyses showed that pMRC01 abortive infection (Abi) system is probably subjected to a complex regulatory control by Rgg-like ORF51 and CopG-like ORF58 proteins. These regulators are suggested to modulate the activity of the putative Abi effectors ORF50 and ORF49 exhibiting topology and functional similarities to the Rex system aborting bacteriophage λ lytic growth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rab4 is a member of the Rab superfamily of small GTPases. It is localized to the early sorting endosome and plays a role in regulating the transport from this compartment to the recycling and degradative pathways. In order to further our understanding of the role Rab4 plays in endocytosis, a yeast two-hybrid screen was performed to identify putative Rab4 effectors. A constitutively active mutant of Rab4, Rab4Q67L, when used as bait to screen a HeLa cDNA library, identified a novel 80kDa protein that interacted with Rab4-GTP. This protein was called Rab Coupling Protein (RCP). RCP interacts preferentially with the GTP-bound form of Rab4. Subsequent work demonstrated that RCP also interacts with Rab11, and that this interaction is not nucleotide-depenedent. RCP is predominantly membrane-bound and localised to the perinuclear recycling compartment. Expression of a truncation mutant of RCP, that contains the Rab binding domain, in HeLa cells, results in the formation of an extensive tubular network that can be labelled with transferrin. These tubules are derived from the recycling compartment since they are inaccessible to transferrin when the ligand is internalised at 18oC. The truncation mutant-induced morphology can be rescued by overexpression of active Rab11, but not active Rab4. This suggests that RCP functions between Rab4 and Rab11 in the receptor recycling pathway, and may act as a ‘molecular bridge’ between these two sequentially acting small GTPases. Quantitative assays demonstrated that overexpression of the truncation mutant results in a dramatic inhibition in the rate of receptor recycling. Database analysis revealed that RCP belongs to a family of Rab interacting proteins, each characterised by a carboxy-terminal coiled-coil domain and an amino-terminal phospholipid-binding domain. KIAA0941, an RCP homologue, interacts with Rab11, but not with Rab4. Overexpression of its Rab binding domain also results in a tubular network, however, this tubulation cannot be rescued by active Rab11.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Uterine leiomyomas (fibroids) are benign smooth muscle tumors that often contain an excessive extracellular matrix (ECM). In the present study, we investigated the interactions between human uterine leiomyoma (UtLM) cells and uterine leiomyoma-derived fibroblasts (FB), and their importance in cell growth and ECM protein production using a coculture system. RESULTS: We found enhanced cell proliferation, and elevated levels of ECM collagen type I and insulin-like growth factor-binding protein-3 after coculturing. There was also increased secretion of vascular endothelial growth factor, epidermal growth factor, fibroblast growth factor-2, and platelet derived growth factor A and B in the media of UtLM cells cocultured with FB. Protein arrays revealed increased phosphorylated receptor tyrosine kinases (RTKs) of the above growth factor ligands, and immunoblots showed elevated levels of the RTK downstream effector, phospho-mitogen activated protein kinase 44/42 in cocultured UtLM cells. There was also increased secretion of transforming growth factor-beta 1 and 3, and immunoprecipitated transforming growth factor-beta receptor I from cocultured UtLM cells showed elevated phosphoserine expression. The downstream effectors phospho-small mothers against decapentaplegic -2 and -3 protein (SMAD) levels were also increased in cocultured UtLM cells. However, none of the above effects were seen in normal myometrial cells cocultured with FB. The soluble factors released by tumor-derived fibroblasts and/or UtLM cells, and activation of the growth factor receptors and their pathways stimulated the proliferation of UtLM cells and enhanced the production of ECM proteins. CONCLUSIONS: These data support the importance of interactions between fibroid tumor cells and ECM fibroblasts in vivo, and the role of growth factors, and ECM proteins in the pathogenesis of uterine fibroids.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fungal pathogens exploit diverse mechanisms to survive exposure to antifungal drugs. This poses concern given the limited number of clinically useful antifungals and the growing population of immunocompromised individuals vulnerable to life-threatening fungal infection. To identify molecules that abrogate resistance to the most widely deployed class of antifungals, the azoles, we conducted a screen of 1,280 pharmacologically active compounds. Three out of seven hits that abolished azole resistance of a resistant mutant of the model yeast Saccharomyces cerevisiae and a clinical isolate of the leading human fungal pathogen Candida albicans were inhibitors of protein kinase C (PKC), which regulates cell wall integrity during growth, morphogenesis, and response to cell wall stress. Pharmacological or genetic impairment of Pkc1 conferred hypersensitivity to multiple drugs that target synthesis of the key cell membrane sterol ergosterol, including azoles, allylamines, and morpholines. Pkc1 enabled survival of cell membrane stress at least in part via the mitogen activated protein kinase (MAPK) cascade in both species, though through distinct downstream effectors. Strikingly, inhibition of Pkc1 phenocopied inhibition of the molecular chaperone Hsp90 or its client protein calcineurin. PKC signaling was required for calcineurin activation in response to drug exposure in S. cerevisiae. In contrast, Pkc1 and calcineurin independently regulate drug resistance via a common target in C. albicans. We identified an additional level of regulatory control in the C. albicans circuitry linking PKC signaling, Hsp90, and calcineurin as genetic reduction of Hsp90 led to depletion of the terminal MAPK, Mkc1. Deletion of C. albicans PKC1 rendered fungistatic ergosterol biosynthesis inhibitors fungicidal and attenuated virulence in a murine model of systemic candidiasis. This work establishes a new role for PKC signaling in drug resistance, novel circuitry through which Hsp90 regulates drug resistance, and that targeting stress response signaling provides a promising strategy for treating life-threatening fungal infections.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The actions of many hormones and neurotransmitters are mediated through stimulation of G protein-coupled receptors. A primary mechanism by which these receptors exert effects inside the cell is by association with heterotrimeric G proteins, which can activate a wide variety of cellular enzymes and ion channels. G protein-coupled receptors can also interact with a number of cytoplasmic scaffold proteins, which can link the receptors to various signaling intermediates and intracellular effectors. The multicomponent nature of G protein-coupled receptor signaling pathways makes them ideally suited for regulation by scaffold proteins. This review focuses on several specific examples of G protein-coupled receptor-associated scaffolds and the roles they may play in organizing receptor-initiated signaling pathways in the cardiovascular system and other tissues.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In addition to conveying cellular responses to an effector molecule, receptors are often themselves regulated by their effectors. We have demonstrated that epinephrine modulates both the rate of transcription of the beta 2-adrenergic receptor (beta 2AR) gene and the steady-state level of beta 2AR mRNA in DDT1MF-2 cells. Short-term (30 min) exposure to epinephrine (100 nM) stimulates the rate of beta 2AR gene transcription, resulting in a 3- to 4-fold increase in steady-state beta 2AR mRNA levels. These effects are mimicked by 1 mM N6,O2'-dibutyryladenosine 3',5'-cyclic monophosphate (Bt2cAMP) or foskolin but not by phorbol esters. The half-life of the beta 2AR mRNA after addition of actinomycin D (46.7 +/- 10.2 min; mean +/- SEM; n = 5) remained unchanged after 30 min of epinephrine treatment (46.8 +/- 10.6 min; mean +/- SEM; n = 4), indicating that a change in transcription rate is the predominant factor responsible for the increase of beta 2AR mRNA. Whereas brief exposure to epinephrine or Bt2cAMP does not significantly affect the total number of cellular beta 2ARs (assessed by ligand binding), continued exposure results in a gradual decline in beta 2AR number to approximately 20% (epinephrine) or approximately 45% (Bt2cAMP) of the levels in control cells by 24 hr. Similar decreases in agonist-stimulated adenylyl cyclase activity are observed. This loss of receptors with prolonged agonist exposure is accompanied by a 50% reduction in beta 2AR mRNA. Transfection of the beta 2AR promoter region cloned onto a reporter gene (bacterial chloramphenicol acetyltransferase) allowed demonstration of a 2- to 4-fold induction of transcription by agents that elevate cAMP levels, such as forskolin or phosphodiesterase inhibitors. These results establish the presence of elements within the proximal promoter region of the beta 2AR gene responsible for the transcriptional enhancing activity of cAMP and demonstrate that beta 2AR gene expression is regulated by a type of feedback mechanism involving the second messenger cAMP.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendrites often exhibit structural changes in response to local inputs. Although mechanisms that pattern and maintain dendritic arbors are becoming clearer, processes regulating regrowth, during context-dependent plasticity or after injury, remain poorly understood. We found that a class of Drosophila sensory neurons, through complete pruning and regeneration, can elaborate two distinct dendritic trees, innervating independent sensory fields. An expression screen identified Cysteine proteinase-1 (Cp1) as a critical regulator of this process. Unlike known ecdysone effectors, Cp1-mutant ddaC neurons pruned larval dendrites normally but failed to regrow adult dendrites. Cp1 expression was upregulated/concentrated in the nucleus during metamorphosis, controlling production of a truncated Cut homeodomain transcription factor. This truncated Cut, but not the full-length protein, allowed Cp1-mutant ddaC neurons to regenerate higher-order adult dendrites. These results identify a molecular pathway needed for dendrite regrowth after pruning, which allows the same neuron to innervate distinct sensory fields.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The phenotype of somatic cells has recently been found to be reversible. Direct reprogramming of one cell type into another has been achieved with transduction and over expression of exogenous defined transcription factors emphasizing their role in specifying cell fate. To discover early and novel endogenous transcription factors that may have a role in adult-derived stem cell acquisition of a cardiomyocyte phenotype, mesenchymal stem cells from human and mouse bone marrow and rat liver were co-cultured with neonatal cardiomyocytes as an in vitro cardiogenic microenvironment. Cell-cell communications develop between the two cell types as early as 24 hrs in co-culture and are required for elaboration of a myocardial phenotype in the stem cells 8-16 days later. These intercellular communications are associated with novel Ca(2+) oscillations in the stem cells that are synchronous with the Ca(2+) transients in adjacent cardiomyocytes and are detected in the stem cells as early as 24-48 hrs in co-culture. Early and significant up-regulation of Ca(2+)-dependent effectors, CAMTA1 and RCAN1 ensues before a myocardial program is activated. CAMTA1 loss-of-function minimizes the activation of the cardiac gene program in the stem cells. While the expression of RCAN1 suggests involvement of the well-characterized calcineurin-NFAT pathway as a response to a Ca(2+) signal, the CAMTA1 up-regulated expression as a response to such a signal in the stem cells was unknown. Cell-cell communications between the stem cells and adjacent cardiomyocytes induce Ca(2+) signals that activate a myocardial gene program in the stem cells via a novel and early Ca(2+)-dependent intermediate, up-regulation of CAMTA1.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The receptor deleted in colorectal cancer (DCC) directs dynamic polarizing activities in animals toward its extracellular ligand netrin. How DCC polarizes toward netrin is poorly understood. By performing live-cell imaging of the DCC orthologue UNC-40 during anchor cell invasion in Caenorhabditis elegans, we have found that UNC-40 clusters, recruits F-actin effectors, and generates F-actin in the absence of UNC-6 (netrin). Time-lapse analyses revealed that UNC-40 clusters assemble, disassemble, and reform at periodic intervals in different regions of the cell membrane. This oscillatory behavior indicates that UNC-40 clusters through a mechanism involving interlinked positive (formation) and negative (disassembly) feedback. We show that endogenous UNC-6 and ectopically provided UNC-6 orient and stabilize UNC-40 clustering. Furthermore, the UNC-40-binding protein MADD-2 (a TRIM family protein) promotes ligand-independent clustering and robust UNC-40 polarization toward UNC-6. Together, our data suggest that UNC-6 (netrin) directs polarized responses by stabilizing UNC-40 clustering. We propose that ligand-independent UNC-40 clustering provides a robust and adaptable mechanism to polarize toward netrin.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To ensure genomic integrity, dividing cells implement multiple checkpoint pathways during the course of the cell cycle. In response to DNA damage, cells may either halt the progression of the cycle (cell cycle arrest) or undergo apoptosis. This choice depends on the extent of damage and the cell's capacity for DNA repair. Cell cycle arrest induced by double-stranded DNA breaks relies on the activation of the ataxia-telangiectasia (ATM) protein kinase, which phosphorylates cell cycle effectors (e.g., Chk2 and p53) to inhibit cell cycle progression. ATM is an S/T-Q directed kinase that is critical for the cellular response to double-stranded DNA breaks. Following DNA damage, ATM is activated and recruited to sites of DNA damage by the MRN protein complex (Mre11-Rad50-Nbs1 proteins) where ATM phosphorylates multiple substrates to trigger a cell cycle arrest. In cancer cells, this regulation may be faulty and cell division may proceed even in the presence of damaged DNA. We show here that the RSK kinase, often elevated in cancers, can suppress DSB-induced ATM activation in both Xenopus egg extracts and human tumor cell lines. In analyzing each step in ATM activation, we have found that RSK disrupts the binding of the MRN complex to DSB DNA. RSK can directly phosphorylate the Mre11 protein at Ser 676 both in vitro and in intact cells and can thereby inhibit loading of Mre11 onto DSB DNA. Accordingly, mutation of Ser 676 to Ala can reverse inhibition of the DSB response by RSK. Collectively, these data point to Mre11 as an important locus of RSK-mediated checkpoint inhibition acting upstream of ATM activation.

The phosphorylation of Mre11 on Ser 676 is antagonized by phosphatases. Here, we screened for phosphatases that target this site and identified PP5 as a candidate. This finding is consistent with the fact that PP5 is required for the ATM-mediated DNA damage response, indicating that PP5 may promote DSB-induced, ATM-dependent DNA damage response by targeting Mre11 upstream of ATM.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lymphomas comprise a diverse group of malignancies derived from immune cells. High throughput sequencing has recently emerged as a powerful and versatile method for analysis of the cancer genome and transcriptome. As these data continue to emerge, the crucial work lies in sorting through the wealth of information to hone in on the critical aspects that will give us a better understanding of biology and new insight for how to treat disease. Finding the important signals within these large data sets is one of the major challenges of next generation sequencing.

In this dissertation, I have developed several complementary strategies to describe the genetic underpinnings of lymphomas. I begin with developing a better method for RNA sequencing that enables strand-specific total RNA sequencing and alternative splicing profiling in the same analysis. I then combine this RNA sequencing technique with whole exome sequencing to better understand the global landscape of aberrations in these diseases. Finally, I use traditional cell and molecular biology techniques to define the consequences of major genetic alterations in lymphoma.

Through this analysis, I find recurrent silencing mutations in the G alpha binding protein GNA13 and associated focal adhesion proteins. I aim to describe how loss-of-function mutations in GNA13 can be oncogenic in the context of germinal center B cell biology. Using in vitro techniques including liquid chromatography-mass spectrometry and knockdown and overexpression of genes in B cell lymphoma cell lines, I determine protein binding partners and downstream effectors of GNA13. I also develop a transgenic mouse model to study the role of GNA13 in the germinal center in vivo to determine effects of GNA13 deletion on germinal center structure and cell migration.

Thus, I have developed complementary approaches that span the spectrum from discovery to context-dependent gene models that afford a better understanding of the biological function of aberrant events and ultimately result in a better understanding of disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Cardiac surgery requiring cardiopulmonary bypass is associated with platelet activation. Because platelets are increasingly recognized as important effectors of ischemia and end-organ inflammatory injury, the authors explored whether postoperative nadir platelet counts are associated with acute kidney injury (AKI) and mortality after coronary artery bypass grafting (CABG) surgery. METHODS: The authors evaluated 4,217 adult patients who underwent CABG surgery. Postoperative nadir platelet counts were defined as the lowest in-hospital values and were used as a continuous predictor of postoperative AKI and mortality. Nadir values in the lowest 10th percentile were also used as a categorical predictor. Multivariable logistic regression and Cox proportional hazard models examined the association between postoperative platelet counts, postoperative AKI, and mortality. RESULTS: The median postoperative nadir platelet count was 121 × 10/l. The incidence of postoperative AKI was 54%, including 9.5% (215 patients) and 3.4% (76 patients) who experienced stages II and III AKI, respectively. For every 30 × 10/l decrease in platelet counts, the risk for postoperative AKI increased by 14% (adjusted odds ratio, 1.14; 95% CI, 1.09 to 1.20; P < 0.0001). Patients with platelet counts in the lowest 10th percentile were three times more likely to progress to a higher severity of postoperative AKI (adjusted proportional odds ratio, 3.04; 95% CI, 2.26 to 4.07; P < 0.0001) and had associated increased risk for mortality immediately after surgery (adjusted hazard ratio, 5.46; 95% CI, 3.79 to 7.89; P < 0.0001). CONCLUSION: The authors found a significant association between postoperative nadir platelet counts and AKI and short-term mortality after CABG surgery.