998 resultados para Economic Crash
Resumo:
At least two important transportation planning activities rely on planning-level crash prediction models. One is motivated by the Transportation Equity Act for the 21st Century, which requires departments of transportation and metropolitan planning organizations to consider safety explicitly in the transportation planning process. The second could arise from a need for state agencies to establish incentive programs to reduce injuries and save lives. Both applications require a forecast of safety for a future period. Planning-level crash prediction models for the Tucson, Arizona, metropolitan region are presented to demonstrate the feasibility of such models. Data were separated into fatal, injury, and property-damage crashes. To accommodate overdispersion in the data, negative binomial regression models were applied. To accommodate the simultaneity of fatality and injury crash outcomes, simultaneous estimation of the models was conducted. All models produce crash forecasts at the traffic analysis zone level. Statistically significant (p-values < 0.05) and theoretically meaningful variables for the fatal crash model included population density, persons 17 years old or younger as a percentage of the total population, and intersection density. Significant variables for the injury and property-damage crash models were population density, number of employees, intersections density, percentage of miles of principal arterial, percentage of miles of minor arterials, and percentage of miles of urban collectors. Among several conclusions it is suggested that planning-level safety models are feasible and may play a role in future planning activities. However, caution must be exercised with such models.
Resumo:
In recent years the development and use of crash prediction models for roadway safety analyses have received substantial attention. These models, also known as safety performance functions (SPFs), relate the expected crash frequency of roadway elements (intersections, road segments, on-ramps) to traffic volumes and other geometric and operational characteristics. A commonly practiced approach for applying intersection SPFs is to assume that crash types occur in fixed proportions (e.g., rear-end crashes make up 20% of crashes, angle crashes 35%, and so forth) and then apply these fixed proportions to crash totals to estimate crash frequencies by type. As demonstrated in this paper, such a practice makes questionable assumptions and results in considerable error in estimating crash proportions. Through the use of rudimentary SPFs based solely on the annual average daily traffic (AADT) of major and minor roads, the homogeneity-in-proportions assumption is shown not to hold across AADT, because crash proportions vary as a function of both major and minor road AADT. For example, with minor road AADT of 400 vehicles per day, the proportion of intersecting-direction crashes decreases from about 50% with 2,000 major road AADT to about 15% with 82,000 AADT. Same-direction crashes increase from about 15% to 55% for the same comparison. The homogeneity-in-proportions assumption should be abandoned, and crash type models should be used to predict crash frequency by crash type. SPFs that use additional geometric variables would only exacerbate the problem quantified here. Comparison of models for different crash types using additional geometric variables remains the subject of future research.
Resumo:
It is important to examine the nature of the relationships between roadway, environmental, and traffic factors and motor vehicle crashes, with the aim to improve the collective understanding of causal mechanisms involved in crashes and to better predict their occurrence. Statistical models of motor vehicle crashes are one path of inquiry often used to gain these initial insights. Recent efforts have focused on the estimation of negative binomial and Poisson regression models (and related deviants) due to their relatively good fit to crash data. Of course analysts constantly seek methods that offer greater consistency with the data generating mechanism (motor vehicle crashes in this case), provide better statistical fit, and provide insight into data structure that was previously unavailable. One such opportunity exists with some types of crash data, in particular crash-level data that are collected across roadway segments, intersections, etc. It is argued in this paper that some crash data possess hierarchical structure that has not routinely been exploited. This paper describes the application of binomial multilevel models of crash types using 548 motor vehicle crashes collected from 91 two-lane rural intersections in the state of Georgia. Crash prediction models are estimated for angle, rear-end, and sideswipe (both same direction and opposite direction) crashes. The contributions of the paper are the realization of hierarchical data structure and the application of a theoretically appealing and suitable analysis approach for multilevel data, yielding insights into intersection-related crashes by crash type.
Resumo:
Large trucks are involved in a disproportionately small fraction of the total crashes but a disproportionately large fraction of fatal crashes. Large truck crashes often result in significant congestion due to their large physical dimensions and from difficulties in clearing crash scenes. Consequently, preventing large truck crashes is critical to improving highway safety and operations. This study identifies high risk sites (hot spots) for large truck crashes in Arizona and examines potential risk factors related to the design and operation of the high risk sites. High risk sites were identified using both state of the practice methods (accident reduction potential using negative binomial regression with long crash histories) and a newly proposed method using Property Damage Only Equivalents (PDOE). The hot spots identified via the count model generally exhibited low fatalities and major injuries but large minor injuries and PDOs, while the opposite trend was observed using the PDOE methodology. The hot spots based on the count model exhibited large AADTs, whereas those based on the PDOE showed relatively small AADTs but large fractions of trucks and high posted speed limits. Documented site investigations of hot spots revealed numerous potential risk factors, including weaving activities near freeway junctions and ramps, absence of acceleration lanes near on-ramps, small shoulders to accommodate large trucks, narrow lane widths, inadequate signage, and poor lighting conditions within a tunnel.
Resumo:
Speeding is recognized as a major contributing factor in traffic crashes. In order to reduce speed-related crashes, the city of Scottsdale, Arizona implemented the first fixed-camera photo speed enforcement program (SEP) on a limited access freeway in the US. The 9-month demonstration program spanning from January 2006 to October 2006 was implemented on a 6.5 mile urban freeway segment of Arizona State Route 101 running through Scottsdale. This paper presents the results of a comprehensive analysis of the impact of the SEP on speeding behavior, crashes, and the economic impact of crashes. The impact on speeding behavior was estimated using generalized least square estimation, in which the observed speeds and the speeding frequencies during the program period were compared to those during other periods. The impact of the SEP on crashes was estimated using 3 evaluation methods: a before-and-after (BA) analysis using a comparison group, a BA analysis with traffic flow correction, and an empirical Bayes BA analysis with time-variant safety. The analysis results reveal that speeding detection frequencies (speeds> or =76 mph) increased by a factor of 10.5 after the SEP was (temporarily) terminated. Average speeds in the enforcement zone were reduced by about 9 mph when the SEP was implemented, after accounting for the influence of traffic flow. All crash types were reduced except rear-end crashes, although the estimated magnitude of impact varies across estimation methods (and their corresponding assumptions). When considering Arizona-specific crash related injury costs, the SEP is estimated to yield about $17 million in annual safety benefits.
Resumo:
Many studies focused on the development of crash prediction models have resulted in aggregate crash prediction models to quantify the safety effects of geometric, traffic, and environmental factors on the expected number of total, fatal, injury, and/or property damage crashes at specific locations. Crash prediction models focused on predicting different crash types, however, have rarely been developed. Crash type models are useful for at least three reasons. The first is motivated by the need to identify sites that are high risk with respect to specific crash types but that may not be revealed through crash totals. Second, countermeasures are likely to affect only a subset of all crashes—usually called target crashes—and so examination of crash types will lead to improved ability to identify effective countermeasures. Finally, there is a priori reason to believe that different crash types (e.g., rear-end, angle, etc.) are associated with road geometry, the environment, and traffic variables in different ways and as a result justify the estimation of individual predictive models. The objectives of this paper are to (1) demonstrate that different crash types are associated to predictor variables in different ways (as theorized) and (2) show that estimation of crash type models may lead to greater insights regarding crash occurrence and countermeasure effectiveness. This paper first describes the estimation results of crash prediction models for angle, head-on, rear-end, sideswipe (same direction and opposite direction), and pedestrian-involved crash types. Serving as a basis for comparison, a crash prediction model is estimated for total crashes. Based on 837 motor vehicle crashes collected on two-lane rural intersections in the state of Georgia, six prediction models are estimated resulting in two Poisson (P) models and four NB (NB) models. The analysis reveals that factors such as the annual average daily traffic, the presence of turning lanes, and the number of driveways have a positive association with each type of crash, whereas median widths and the presence of lighting are negatively associated. For the best fitting models covariates are related to crash types in different ways, suggesting that crash types are associated with different precrash conditions and that modeling total crash frequency may not be helpful for identifying specific countermeasures.
Resumo:
The costs of work-related crashes In Australia and overseas, fleet safety or work-related road safety is an issue gaining increased attention from researchers, organisations, road safety practitioners and the general community. This attention is primarily in response to the substantial physical, emotional and economic costs associated with work-related road crashes. The increased risk factors and subsequent costs of work-related driving are also now well documented in the literature. For example, it is noteworthy that research has demonstrated that work-related drivers on average report a higher level of crash involvement compared to personal car drivers (Downs et al., 1999; Kweon and Kockelman, 2003) and in particular within Australia, road crashes are the most common form of work-related fatalities (Haworth et al., 2000).
Resumo:
Australia, road crash trauma costs the nation A$15 billion annually whilst the US estimates an economic impact of around US$ 230 billion on its network. Worldwide economic cost of road crashes is estimated to be around US$ 518 billion each year. Road accidents occur due to a number of factors including driver behaviour, geometric alignment, vehicle characteristics, environmental impacts, and the type and condition of the road surfacing. Skid resistance is considered one of the most important road surface characteristics because it has a direct effect on traffic safety. In 2005, Austroads (the Association of Australian and New Zealand Road Transport and Traffic Authorities) published a guideline for the management of skid resistance and Queensland Department of Main Roads (QDMR) developed a skid resistance management plan (SRMP). The current QDMR strategy is based on rationale analytical methodology supported by field inspection with related asset management decision tools. The Austroads’s guideline and QDMR's skid resistance management plan have prompted QDMR to review its skid resistance management practice. As a result, a joint research project involving QDMR, Queensland University of Technology (QUT) and the Corporative Research Centre for Integrated Engineering Asset Management (CRC CIEAM) was formed. The research project aims at investigating whether there is significant relationship between road crashes and skid resistance on Queensland’s road networks. If there is, the current skid resistance management practice of QDMR will be reviewed and appropriate skid resistance investigatory levels will be recommended. This paper presents analysis results in assessing the relationship between wet crashes and skid resistance on Queensland roads. Attributes considered in the analysis include surface types, annual average daily traffic (AADT), speed and seal age.
Resumo:
Background For CAM to feature prominently in health care decision-making there is a need to expand the evidence-base and to further incorporate economic evaluation into research priorities. In a world of scarce health care resources and an emphasis on efficiency and clinical efficacy, CAM, as indeed do all other treatments, requires rigorous evaluation to be considered in budget decision-making. Methods Economic evaluation provides the tools to measure the costs and health consequences of CAM interventions and thereby inform decision making. This article offers CAM researchers an introductory framework for understanding, undertaking and disseminating economic evaluation. The types of economic evaluation available for the study of CAM are discussed, and decision modelling is introduced as a method for economic evaluation with much potential for use in CAM. Two types of decision models are introduced, decision trees and Markov models, along with a worked example of how each method is used to examine costs and health consequences. This is followed by a discussion of how this information is used by decision makers. Conclusions Undoubtedly, economic evaluation methods form an important part of health care decision making. Without formal training it can seem a daunting task to consider economic evaluation, however, multidisciplinary teams provide an opportunity for health economists, CAM practitioners and other interested researchers, to work together to further develop the economic evaluation of CAM.
Resumo:
Current guidelines on clear zone selection and roadside hazard management adopt the US approach based on the likelihood of roadside encroachment by drivers. This approach is based on the available research conducted in the 1960s and 70s. Over time, questions have been raised regarding the robustness and applicability of this research in Australasia in 2010 and in the Safe System context. This paper presents a review of the fundamental research relating to selection of clear zones. Results of extensive rural highway statistical data modelling suggest that a significant proportion of run-off-road to the left casualty crashes occurs in clear zones exceeding 13 m. They also show that the risk of run-off-road to the left casualty crashes was 21% lower where clear zones exceeded 8 m when compared with clear zones in the 4 – 8 m range. The paper discusses a possible approach to selection of clear zones based on managing crash outcomes, rather than on the likelihood of roadside encroachment which is the basis for the current practice. It is expected that this approach would encourage selection of clear zones wider than 8 m when the combination of other road features suggests higher than average casualty crash risk.
Resumo:
Currently in Australia, there are no decision support tools for traffic and transport engineers to assess the crash risk potential of proposed road projects at design level. A selection of equivalent tools already exists for traffic performance assessment, e.g. aaSIDRA or VISSIM. The Urban Crash Risk Assessment Tool (UCRAT) was developed for VicRoads by ARRB Group to promote methodical identification of future crash risks arising from proposed road infrastructure, where safety cannot be evaluated based on past crash history. The tool will assist practitioners with key design decisions to arrive at the safest and the most cost -optimal design options. This paper details the development and application of UCRAT software. This professional tool may be used to calculate an expected mean number of casualty crashes for an intersection, a road link or defined road network consisting of a number of such elements. The mean number of crashes provides a measure of risk associated with the proposed functional design and allows evaluation of alternative options. The tool is based on historical data for existing road infrastructure in metropolitan Melbourne and takes into account the influence of key design features, traffic volumes, road function and the speed environment. Crash prediction modelling and risk assessment approaches were combined to develop its unique algorithms. The tool has application in such projects as road access proposals associated with land use developments, public transport integration projects and new road corridor upgrade proposals.
Resumo:
The burden of rising health care expenditures has created a demand for information regarding the clinical and economic outcomes associated with complementary and alternative medicines. Meta-analyses of randomized controlled trials have found Hypericum perforatum preparations to be superior to placebo and similarly effective as standard antidepressants in the acute treatment of mild to moderate depression. A clear advantage over antidepressants has been demonstrated in terms of the reduced frequency of adverse effects and lower treatment withdrawal rates, low rates of side effects and good compliance, key variables affecting the cost-effectiveness of a given form of therapy. The most important risk associated with use is potential interactions with other drugs, but this may be mitigated by using extracts with low hyperforin content. As the indirect costs of depression are greater than five times direct treatment costs, given the rising cost of pharmaceutical antidepressants, the comparatively low cost of Hypericum perforatum extract makes it worthy of consideration in the economic evaluation of mild to moderate depression treatments.
Resumo:
Hazard perception in driving is the one of the few driving-specific skills associated with crash involvement. However, this relationship has only been examined in studies where the majority of individuals were younger than 65. We present the first data revealing an association between hazard perception and self-reported crash involvement in drivers aged 65 and over. In a sample of 271 drivers, we found that individuals whose mean response time to traffic hazards was slower than 6.68 seconds (the ROC-curve derived pass mark for the test) were 2.32 times (95% CI 1.46, 3.22) more likely to have been involved in a self-reported crash within the previous five years than those with faster response times. This likelihood ratio became 2.37 (95% CI 1.49, 3.28) when driving exposure was controlled for. As a comparison, individuals who failed a test of useful field of view were 2.70 (95% CI 1.44, 4.44) times more likely to crash than those who passed. The hazard perception test and the useful field of view measure accounted for separate variance in crash involvement. These findings indicate that hazard perception testing and training could be potentially useful for road safety interventions for this age group.
Resumo:
A number of advanced driver assistance systems (ADAS) are currently being released on the market, providing safety functions to the drivers such as collision avoidance, adaptive cruise control or enhanced night-vision. These systems however are inherently limited by their sensory range: they cannot gather information from outside this range, also called their “perceptive horizon”. Cooperative systems are a developing research avenue that aims at providing extended safety and comfort functionalities by introducing vehicle-to-vehicle (V2V) and vehicle-to-infrastructure (V2I) wireless communications to the road actors. This paper presents the problematic of cooperative systems, their advantages and contributions to road safety and exposes some limitations related to market penetration, sensors accuracy and communications scalability. It explains the issues of how to implement extended perception, a central contribution of cooperative systems. The initial steps of an evaluation of data fusion architectures for extended perception are exposed.
Resumo:
Background Heavy vehicle transportation continues to grow internationally; yet crash rates are high, and the risk of injury and death extends to all road users. The work environment for the heavy vehicle driver poses many challenges; conditions such as scheduling and payment are proposed risk factors for crash, yet the precise measure of these needs quantifying. Other risk factors such as sleep disorders including obstructive sleep apnoea have been shown to increase crash risk in motor vehicle drivers however the risk of heavy vehicle crash from this and related health conditions needs detailed investigation. Methods and Design The proposed case control study will recruit 1034 long distance heavy vehicle drivers: 517 who have crashed and 517 who have not. All participants will be interviewed at length, regarding their driving and crash history, typical workloads, scheduling and payment, trip history over several days, sleep patterns, health, and substance use. All participants will have administered a nasal flow monitor for the detection of obstructive sleep apnoea. Discussion Significant attention has been paid to the enforcement of legislation aiming to deter problems such as excess loading, speeding and substance use; however, there is inconclusive evidence as to the direction and strength of associations of many other postulated risk factors for heavy vehicle crashes. The influence of factors such as remuneration and scheduling on crash risk is unclear; so too the association between sleep apnoea and the risk of heavy vehicle driver crash. Contributory factors such as sleep quality and quantity, body mass and health status will be investigated. Quantifying the measure of effect of these factors on the heavy vehicle driver will inform policy development that aims toward safer driving practices and reduction in heavy vehicle crash; protecting the lives of many on the road network.