958 resultados para Earthquake Rupture


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Himalaya has experienced three great earthquakes during the last century1934 Nepal-Bihar, 1950 Upper Assam, and arguably the 1905 Kangra. Focus here is on the central Himalayan segment between the 1905 and the 1934 ruptures, where previous studies have identified a great earthquake between thirteenth and sixteenth centuries. Historical data suggest damaging earthquakes in A.D. 1255, 1344, 1505, 1803, and 1833, although their sources and magnitudes remain debated. We present new evidence for a great earthquake from a trench across the base of a 13m high scarp near Ramnagar at the Himalayan Frontal Thrust. The section exposed four south verging fault strands and a backthrust offsetting a broad spectrum of lithounits, including colluvial deposits. Age data suggest that the last great earthquake in the central Himalaya most likely occurred between A.D. 1259 and 1433. While evidence for this rupture is unmistakable, the stratigraphic clues imply an earlier event, which can most tentatively be placed between A.D. 1050 and 1250. The postulated existence of this earlier event, however, requires further validation. If the two-earthquake scenario is realistic, then the successive ruptures may have occurred in close intervals and were sourced on adjacent segments that overlapped at the trench site. Rupture(s) identified in the trench closely correlate with two damaging earthquakes of 1255 and 1344 reported from Nepal. The present study suggests that the frontal thrust in central Himalaya may have remained seismically inactive during the last similar to 700years. Considering this long elapsed time, a great earthquake may be due in the region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main objective of the paper is to develop a new method to estimate the maximum magnitude (M (max)) considering the regional rupture character. The proposed method has been explained in detail and examined for both intraplate and active regions. Seismotectonic data has been collected for both the regions, and seismic study area (SSA) map was generated for radii of 150, 300, and 500 km. The regional rupture character was established by considering percentage fault rupture (PFR), which is the ratio of subsurface rupture length (RLD) to total fault length (TFL). PFR is used to arrive RLD and is further used for the estimation of maximum magnitude for each seismic source. Maximum magnitude for both the regions was estimated and compared with the existing methods for determining M (max) values. The proposed method gives similar M (max) value irrespective of SSA radius and seismicity. Further seismicity parameters such as magnitude of completeness (M (c) ), ``a'' and ``aEuro parts per thousand b `` parameters and maximum observed magnitude (M (max) (obs) ) were determined for each SSA and used to estimate M (max) by considering all the existing methods. It is observed from the study that existing deterministic and probabilistic M (max) estimation methods are sensitive to SSA radius, M (c) , a and b parameters and M (max) (obs) values. However, M (max) determined from the proposed method is a function of rupture character instead of the seismicity parameters. It was also observed that intraplate region has less PFR when compared to active seismic region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this paper was to develop the seismic hazard maps of Patna district considering the region-specific maximum magnitude and ground motion prediction equation (GMPEs) by worst-case deterministic and classical probabilistic approaches. Patna, located near Himalayan active seismic region has been subjected to destructive earthquakes such as 1803 and 1934 Bihar-Nepal earthquakes. Based on the past seismicity and earthquake damage distribution, linear sources and seismic events have been considered at radius of about 500 km around Patna district center. Maximum magnitude (M (max)) has been estimated based on the conventional approaches such as maximum observed magnitude (M (max) (obs) ) and/or increment of 0.5, Kijko method and regional rupture characteristics. Maximum of these three is taken as maximum probable magnitude for each source. Twenty-seven ground motion prediction equations (GMPEs) are found applicable for Patna region. Of these, suitable region-specific GMPEs are selected by performing the `efficacy test,' which makes use of log-likelihood. Maximum magnitude and selected GMPEs are used to estimate PGA and spectral acceleration at 0.2 and 1 s and mapped for worst-case deterministic approach and 2 and 10 % period of exceedance in 50 years. Furthermore, seismic hazard results are used to develop the deaggregation plot to quantify the contribution of seismic sources in terms of magnitude and distance. In this study, normalized site-specific design spectrum has been developed by dividing the hazard map into four zones based on the peak ground acceleration values. This site-specific response spectrum has been compared with recent Sikkim 2011 earthquake and Indian seismic code IS1893.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Occurrence of the April 25, 2015 (Mw 7.8) earthquake near Gorkha, central Nepal, and another one that followed on May 12 (Mw 7.3), located similar to 140 km to its east, provides an exceptional opportunity to understand some new facets of Himalayan earthquakes. Here we attempt to assess the seismotectonics of these earthquakes based on the deformational field generated by these events, along with the spatial and temporal characteristics of their aftershocks. When integrated with some of the post-earthquake field observations, including the localization of damage and surface deformation, it became obvious that although the mainshock slip was mostly limited to the Main Himalayan Thrust (MHT), the rupture did not propagate to the Main Frontal Thrust (MFT). Field evidence, supported by the available InSAR imagery of the deformation field, suggests that a component of slip could have emerged through a previously identified out-of-sequence thrust/active thrust in the region that parallels the Main Central Thrust (MCT), known in the literature as a co-linear physiographic transitional zone called PT2. Termination of the first rupture, triggering of the second large earthquake, and distribution of aftershocks are also spatially constrained by the eastern extremity of PT2. Mechanism of the 2015 sequence demonstrates that the out-of-sequence thrusts may accommodate part of the slip, an aspect that needs to be considered in the current understanding of the mechanism of earthquakes originating on the MHT. (c) 2015 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, an attempt has been made to prepare the seismic intensity map for south India considering the probable earthquakes in the region. Anbazhagan et al. (Nat Hazards 60:1325-1345, 2012) have identified eight probable future earthquake zones in south India based on rupture-based seismic hazard analysis. Anbazhagan et al. (Eng Geol 171:81-95, 2014) has estimated the maximum future earthquake magnitude at these eight zones using regional rupture character. In this study, the whole south India is divided into several grids of size 1(o) x 1(o) and the intensity at each grid point is calculated using the regional intensity model for the maximum earthquake magnitude at each of the eight zones. The intensity due to earthquakes at these zones is mapped and thus eight seismic intensity maps are prepared. The final seismic intensity map of south India is obtained by considering the maximum intensity at each grid point due to the estimated earthquakes. By looking at the seismic intensity map, one can expect slight to heavy damage due to the probable earthquake magnitudes. Heavy damage may happen close to the probable earthquake zones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The central part of the Himalaya (Kumaun and Garhwal Provinces of India) is noted for its prolonged seismic quiescence, and therefore, developing a longer-term time series of past earthquakes to understand their recurrence pattern in this segment assumes importance. In addition to direct observations of offsets in stratigraphic exposures or other proxies like paleoliquefaction, deformation preserved within stalagmites (speleothems) in karst system can be analyzed to obtain continuous millennial scale time series of earthquakes. The Central Indian Himalaya hosts natural caves between major active thrusts forming potential storehouses for paleoseismological records. Here, we present results from the limestone caves in the Kumaun Himalaya and discuss the implications of growth perturbations identified in the stalagmites as possible earthquake recorders. This article focuses on three stalagmites from the Dharamjali Cave located in the eastern Kumaun Himalaya, although two other caves, one of them located in the foothills, were also examined for their suitability. The growth anomalies in stalagmites include abrupt tilting or rotation of growth axes, growth termination, and breakage followed by regrowth. The U-Th age data from three specimens allow us to constrain the intervals of growth anomalies, and these were dated at 4273 +/- 410 years BP (2673-1853 BC), 2782 +/- 79 years BP (851-693 BC), 2498 +/- 117 years BP (605-371 BC), 1503 +/- 245 years BP (262-752 AD), 1346 +/- 101 years BP (563-765 AD), and 687 +/- 147 years BP (1176-1470 AD). The dates may correspond to the timings of major/great earthquakes in the region and the youngest event (1176-1470 AD) shows chronological correspondence with either one of the great medieval earthquakes (1050-1250 and 1259-1433 AD) evident from trench excavations across the Himalayan Frontal Thrust.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Oceanic intraplate earthquakes are known to occur either on active ridge-transform structures or by reactivation of their inactive counterparts, generally referred to as fossil ridges or transforms. The Indian Ocean, one of the most active oceanic intraplate regions, has generated large earthquakes associated with both these types of structures. The moderate earthquake that occurred on 21 May 2014 (M-w 6.1) in the northern Bay of Bengal followed an alternate mechanism, as it showed no clear association either with active or extinct ridge-transform structures. Its focal depth of >50 km is uncommon but not improbable, given the similar to 90 Ma age of the ocean floor with 12-km-thick overlying sediments. No tectonic features have been mapped in the near vicinity of its epicenter, the closest being the 85 degrees E ridge, located similar to 100 km to its west, hitherto regarded as seismically inactive. The few earthquakes that have occurred here in the past are clustered around its southern or northern limits, and a few are located midway, at around 10 degrees N. The 2014 earthquake, sourced close to the northern cluster, seems to be associated with a northwest-southeast-oriented fracture, located on the eastern flanks of the 85 degrees E ridge. If this causal association is possible, we believe that reactivation of fossil hotspot trails could be considered as another mechanism for oceanic intraplate seismicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper reports a multi-scale study on damage evolution process and rupture of gabbro under uniaxial compression with several experimental techniques, including MTS810 testing machine, white digital speckle correlation method, and acoustic emission technique. In particular, the synchronization of the three experimental systems is realized for the study of relationship of deformation and damage at multiple scales. It is found that there are significant correlation between damage evolution at small and large length scales, and rupture at sample scale, especially it displays critical sensitivity at multiple scales and trans-scale fluctuations.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the three-dimensional elastic inclusion model proposed by Dobrovolskii, we developed a rheological inclusion model to study earthquake preparation processes. By using the Corresponding Principle in the theory of rheologic mechanics, we derived the analytic expressions of viscoelastic displacement U(r, t) , V(r, t) and W(r, t), normal strains epsilon(xx) (r, t), epsilon(yy) (r, t) and epsilon(zz) (r, t) and the bulk strain theta (r, t) at an arbitrary point (x, y, z) in three directions of X axis, Y axis and Z axis produced by a three-dimensional inclusion in the semi-infinite rheologic medium defined by the standard linear rheologic model. Subsequent to the spatial-temporal variation of bulk strain being computed on the ground produced by such a spherical rheologic inclusion, interesting results are obtained, suggesting that the bulk strain produced by a hard inclusion change with time according to three stages (alpha, beta, gamma) with different characteristics, similar to that of geodetic deformation observations, but different with the results of a soft inclusion. These theoretical results can be used to explain the characteristics of spatial-temporal evolution, patterns, quadrant-distribution of earthquake precursors, the changeability, spontaneity and complexity of short-term and imminent-term precursors. It offers a theoretical base to build physical models for earthquake precursors and to predict the earthquakes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The main idea of the Load-Unload Response Ratio (LURR) is that when a system is stable, its response to loading corresponds to its response to unloading, whereas when the system is approaching an unstable state, the response to loading and unloading becomes quite different. High LURR values and observations of Accelerating Moment/Energy Release (AMR/AER) prior to large earthquakes have led different research groups to suggest intermediate-term earthquake prediction is possible and imply that the LURR and AMR/AER observations may have a similar physical origin. To study this possibility, we conducted a retrospective examination of several Australian and Chinese earthquakes with magnitudes ranging from 5.0 to 7.9, including Australia's deadly Newcastle earthquake and the devastating Tangshan earthquake. Both LURR values and best-fit power-law time-to-failure functions were computed using data within a range of distances from the epicenter. Like the best-fit power-law fits in AMR/AER, the LURR value was optimal using data within a certain epicentral distance implying a critical region for LURR. Furthermore, LURR critical region size scales with mainshock magnitude and is similar to the AMR/AER critical region size. These results suggest a common physical origin for both the AMR/AER and LURR observations. Further research may provide clues that yield an understanding of this mechanism and help lead to a solid foundation for intermediate-term earthquake prediction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The theory of the loading/unloading response ratio (LURR) was applied to the Jiashi earthquake sequence which occurred at the beginning of 1997 in Xinjiang, and found that, before the earthquakes with relatively high magnitudes In the sequence, the ratio showed anomalies of high values. That is to say, the LURR theory can be applied to the short-term earthquake prediction in some cases, especially in the early period after a strong earthquake, such as the forecasts for some strong earthquakes in the Jiashi sequence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the basis of the lattice model of MORA and PLACE, Discrete Element Method, and Molecular Dynamics approach, another kind of numerical model is developed. The model consists of a 2-D set of particles linked by three kinds of interactions and arranged into triangular lattice. After the fracture criterion and rules of changes between linking states are given, the particle positions, velocities and accelerations at every time step are calculated using a finite-difference scheme, and the configuration of particles can be gained step by step. Using this model, realistic fracture simulations of brittle solid (especially under pressure) and simulation of earthquake dynamics are made.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In heterogeneous brittle media, the evolution of damage is strongly influenced by the multiscale coupling effect. To better understand this effect, we perform a detailed investigation of the damage evolution, with particular attention focused on the catastrophe transition. We use an adaptive multiscale finite-element model (MFEM) to simulate the damage evolution and the catastrophic failure of heterogeneous brittle media. Both plane stress and plane strain cases are investigated for a heterogeneous medium whose initial shear strength follows the Weibull distribution. Damage is induced through the application of the Coulomb failure criterion to each element, and the element mesh is refined where the failure criterion is met. We found that as damage accumulates, there is a stronger and stronger nonlinear increase in stress and the stress redistribution distance. The coupling of the dynamic stress redistribution and the heterogeneity at different scales result in an inverse cascade of damage cluster size, which represents rapid coalescence of damage at the catastrophe transition.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the broken characteristics about earthquake to tailings dams, the earthquake stability analysis methods for tailings dams are introduced. Taking fine tailings dam in Longdu Tailings Pool as an example, the stability of the dam with various situations while earthquake with seven magnitude takes place there. The results can be used by Longdu Mine for tailings pool safety management.