887 resultados para Early 20th century
Resumo:
Chapters contributed by experts on each period examine how world views have determined the view of war and peace, and the conduct of war, throughout European history.
The Asian summer monsoon: an intercomparison of CMIP5 vs. CMIP3 simulations of the late 20th century
Resumo:
The boreal summer Asian monsoon has been evaluated in 25 Coupled Model Intercomparison Project-5 (CMIP5) and 22 CMIP3 GCM simulations of the late 20th Century. Diagnostics and skill metrics have been calculated to assess the time-mean, climatological annual cycle, interannual variability, and intraseasonal variability. Progress has been made in modeling these aspects of the monsoon, though there is no single model that best represents all of these aspects of the monsoon. The CMIP5 multi-model mean (MMM) is more skillful than the CMIP3 MMM for all diagnostics in terms of the skill of simulating pattern correlations with respect to observations. Additionally, for rainfall/convection the MMM outperforms the individual models for the time mean, the interannual variability of the East Asian monsoon, and intraseasonal variability. The pattern correlation of the time (pentad) of monsoon peak and withdrawal is better simulated than that of monsoon onset. The onset of the monsoon over India is typically too late in the models. The extension of the monsoon over eastern China, Korea, and Japan is underestimated, while it is overestimated over the subtropical western/central Pacific Ocean. The anti-correlation between anomalies of all-India rainfall and Niño-3.4 sea surface temperature is overly strong in CMIP3 and typically too weak in CMIP5. For both the ENSO-monsoon teleconnection and the East Asian zonal wind-rainfall teleconnection, the MMM interannual rainfall anomalies are weak compared to observations. Though simulation of intraseasonal variability remains problematic, several models show improved skill at representing the northward propagation of convection and the development of the tilted band of convection that extends from India to the equatorial west Pacific. The MMM also well represents the space-time evolution of intraseasonal outgoing longwave radiation anomalies. Caution is necessary when using GPCP and CMAP rainfall to validate (1) the time-mean rainfall, as there are systematic differences over ocean and land between these two data sets, and (2) the timing of monsoon withdrawal over India, where the smooth southward progression seen in India Meteorological Department data is better realized in CMAP data compared to GPCP data.
Resumo:
The huge warming of the Arctic that started in the early 1920s and lasted for almost two decades is one of the most spectacular climate events of the twentieth century. During the peak period 1930–40, the annually averaged temperature anomaly for the area 60°–90°N amounted to some 1.7°C. Whether this event is an example of an internal climate mode or is externally forced, such as by enhanced solar effects, is presently under debate. This study suggests that natural variability is a likely cause, with reduced sea ice cover being crucial for the warming. A robust sea ice–air temperature relationship was demonstrated by a set of four simulations with the atmospheric ECHAM model forced with observed SST and sea ice concentrations. An analysis of the spatial characteristics of the observed early twentieth-century surface air temperature anomaly revealed that it was associated with similar sea ice variations. Further investigation of the variability of Arctic surface temperature and sea ice cover was performed by analyzing data from a coupled ocean–atmosphere model. By analyzing climate anomalies in the model that are similar to those that occurred in the early twentieth century, it was found that the simulated temperature increase in the Arctic was related to enhanced wind-driven oceanic inflow into the Barents Sea with an associated sea ice retreat. The magnitude of the inflow is linked to the strength of westerlies into the Barents Sea. This study proposes a mechanism sustaining the enhanced westerly winds by a cyclonic atmospheric circulation in the Barents Sea region created by a strong surface heat flux over the ice-free areas. Observational data suggest a similar series of events during the early twentieth-century Arctic warming, including increasing westerly winds between Spitsbergen and Norway, reduced sea ice, and enhanced cyclonic circulation over the Barents Sea. At the same time, the North Atlantic Oscillation was weakening.
Resumo:
The Asian summer monsoon is a high dimensional and highly nonlinear phenomenon involving considerable moisture transport towards land from the ocean, and is critical for the whole region. We have used daily ECMWF reanalysis (ERA-40) sea-level pressure (SLP) anomalies to the seasonal cycle, over the region 50-145°E, 20°S-35°N to study the nonlinearity of the Asian monsoon using Isomap. We have focused on the two-dimensional embedding of the SLP anomalies for ease of interpretation. Unlike the unimodality obtained from tests performed in empirical orthogonal function space, the probability density function, within the two-dimensional Isomap space, turns out to be bimodal. But a clustering procedure applied to the SLP data reveals support for three clusters, which are identified using a three-component bivariate Gaussian mixture model. The modes are found to appear similar to active and break phases of the monsoon over South Asia in addition to a third phase, which shows active conditions over the Western North Pacific. Using the low-level wind field anomalies the active phase over South Asia is found to be characterised by a strengthening and an eastward extension of the Somali jet whereas during the break phase the Somali jet is weakened near southern India, while the monsoon trough in northern India also weakens. Interpretation is aided using the APHRODITE gridded land precipitation product for monsoon Asia. The effect of large-scale seasonal mean monsoon and lower boundary forcing, in the form of ENSO, is also investigated and discussed. The outcome here is that ENSO is shown to perturb the intraseasonal regimes, in agreement with conceptual ideas.
Resumo:
Comparison of single-forcing varieties of 20th century historical experiments in a subset of models from the Fifth Coupled Model Intercomparison Project (CMIP5) reveals that South Asian summer monsoon rainfall increases towards the present day in Greenhouse Gas (GHG)-only experiments with respect to pre-industrial levels, while it decreases in anthropogenic aerosol-only experiments. Comparison of these single-forcing experiments with the all-forcings historical experiment suggests aerosol emissions have dominated South Asian monsoon rainfall trends in recent decades, especially during the 1950s to 1970s. The variations in South Asian monsoon rainfall in these experiments follows approximately the time evolution of inter-hemispheric temperature gradient over the same period, suggesting a contribution from the large-scale background state relating to the asymmetric distribution of aerosol emissions about the equator. By examining the 24 available all-forcings historical experiments, we show that models including aerosol indirect effects dominate the negative rainfall trend. Indeed, models including only the direct radiative effect of aerosol show an increase in monsoon rainfall, consistent with the dominance of increasing greenhouse gas emissions and planetary warming on monsoon rainfall in those models. For South Asia, reduced rainfall in the models with indirect effects is related to decreased evaporation at the land surface rather than from anomalies in horizontal moisture flux, suggesting the impact of indirect effects on local aerosol emissions. This is confirmed by examination of aerosol loading and cloud droplet number trends over the South Asia region. Thus, while remote aerosols and their asymmetric distribution about the equator play a role in setting the inter-hemispheric temperature distribution on which the South Asian monsoon, as one of the global monsoons, operates, the addition of indirect aerosol effects acting on very local aerosol emissions also plays a role in declining monsoon rainfall. The disparity between the response of monsoon rainfall to increasing aerosol emissions in models containing direct aerosol effects only and those also containing indirect effects needs to be urgently investigated since the suggested future decline in Asian anthropogenic aerosol emissions inherent to the representative concentration pathways (RCPs) used for future climate projection may turn out to be optimistic. In addition, both groups of models show declining rainfall over China, also relating to local aerosol mechanisms. We hypothesize that aerosol emissions over China are large enough, in the CMIP5 models, to cause declining monsoon rainfall even in the absence of indirect aerosol effects. The same is not true for India.
Resumo:
The geochemical analysis of soil samples from the Roman town of Calleva Atrebatum (Silchester, Hampshire, UK) has been undertaken in order to enhance our understanding of urban occupation during the late first/early second century AD. Samples taken from a variety of occupation deposits within several, contemporary timber buildings, including associated hearths, have been analysed using laboratory-based x-ray fluorescence for a suite of elements (Cu, Zn, Pb, Sr, P and Ca). The patterns of elemental enrichment seen across the site have allowed us to compare and contrast the buildings that were occupied during this time in an attempt to distinguish different uses, such as between domestic and work-space. Two of the buildings stand out as having high concentrations of elements which suggest that they were dirtier work spaces, whilst other buildings appear to be have lower chemical loadings suggesting they were cleaner.