940 resultados para EWMA chart
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The aims of this study were to develop a dental chart evaluate any oral cavity disease, develop gypsum models the dental arches, and to register the occlusions found in coatis (Nasua nasua) in captivity. Formulation of the dental chart was assisted by intraoral radiographs from the head of an adult coati cadaver of the same species with the following dental formula: I 3/3, C 1/1, P 4/3, M 2/2. Seven live coatis of the Nasua nasua species were evaluated. Five of the seven coatis presented with various dental abnormalities as follows: dental plaque (71.4 %), gingivitis (71.4 %), periodontitis (57.1 %), dental stain (42.9 %), dental abrasion (57.1 %), dental fracture (57.1 %), pulp exposure (42.9 %), malocclusion (5 7.1 %) and supernumerary teeth (14.2 %).
Resumo:
Este artigo considera um gráfico np x proposto por Wu et al. (2009) para controle de média de processo como uma alternativa ao uso do gráfico de. O que distingue do gráfico de controle np x é o fato das unidades amostrais serem classificadas como unidades de primeiro ou de segunda classe de acordo com seus limites discriminantes. O gráfico tradicional np é um caso particular do gráfico np x quando os limites discriminantes coincidem com os limites de especificação e unidade de primeira (segunda) classe é um item conforme (não conforme). Estendendo o trabalho de Reynolds Junior, Arnold e Baik (1996), consideramos que a média de processo oscila mesmo na ausência de alguma causa especial. As propriedades de Cadeia de Markov foram adotadas para avaliar o desempenho do gráfico np x no monitoramento de média de processos que oscila. de modo geral, o gráfico np x requer amostras duas vezes maior para superar desempenho do gráfico (enquanto que o gráfico tradicional np necessita tamanho de amostras cinco ou seis vezes maior).
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
A Fortran computer program is given for the computation of the adjusted average time to signal, or AATS, for adaptive (X) over bar charts with one, two, or all three design parameters variable: the sample size, n, the sampling interval, h, and the factor k used in determining the width of the action limits. The program calculates the threshold limit to switch the adaptive design parameters and also provides the in-control average time to signal, or ATS.
Resumo:
An economic-statistical model is developed for variable parameters (VP) (X) over bar charts in which all design parameters vary adaptively, that is, each of the design parameters (sample size, sampling interval and control-limit width) vary as a function of the most recent process information. The cost function due to controlling the process quality through a VP (X) over bar chart is derived. During the optimization of the cost function, constraints are imposed on the expected times to signal when the process is in and out of control. In this way, required statistical properties can be assured. Through a numerical example, the proposed economic-statistical design approach for VP (X) over bar charts is compared to the economic design for VP (X) over bar charts and to the economic-statistical and economic designs for fixed parameters (FP) (X) over bar charts in terms of the operating cost and the expected times to signal. From this example, it is possible to assess the benefits provided by the proposed model. Varying some input parameters, their effect on the optimal cost and on the optimal values of the design parameters was analysed.
Resumo:
Traditionally, an (X) over bar chart is used to control the process mean and an R chart is used to control the process variance. However, these charts are not sensitive to small changes in the process parameters. The adaptive ($) over bar and R charts might be considered if the aim is to detect small disturbances. Due to the statistical character of the joint (X) over bar and R charts with fixed or adaptive parameters, they are not reliable in identifing the nature of the disturbance, whether it is one that shifts the process mean, increases the process variance, or leads to a combination of both effects. In practice, the speed with which the control charts detect process changes may be more important than their ability in identifying the nature of the change. Under these circumstances, it seems to be advantageous to consider a single chart, based on only one statistic, to simultaneously monitor the process mean and variance. In this paper, we propose the adaptive non-central chi-square statistic chart. This new chart is more effective than the adaptive (X) over bar and R charts in detecting disturbances that shift the process mean, increase the process variance, or lead to a combination of both effects. Copyright (c) 2006 John Wiley & Sons, Ltd.
Resumo:
In this article, we consider the synthetic control chart with two-stage sampling (SyTS chart) to control the process mean and variance. During the first stage, one item of the sample is inspected; if its value X, is close to the target value of the process mean, then the sampling is interrupted. Otherwise, the sampling goes on to the second stage, where the remaining items are inspected and the statistic T = Sigma [x(i) - mu(0) + xi sigma(0)](2) is computed taking into account all items of the sample. The design parameter is function of X-1. When the statistic T is larger than a specified value, the sample is classified as nonconforming. According to the synthetic procedure, the signal is based on Conforming Run Length (CRL). The CRL is the number of samples taken from the process since the previous nonconforming sample until the occurrence of the next nonconforming sample. If the CRL is sufficiently small, then a signal is generated. A comparative study shows that the SyTS chart and the joint X and S charts with double sampling are very similar in performance. However, from the practical viewpoint, the SyTS chart is more convenient to administer than the joint charts.
Resumo:
In this paper, we consider the non-central chi-square chart with two stage samplings. During the first stage, one item of the sample is inspected and, depending on the result, the sampling is either interrupted, or it goes on to the second stage, where the remaining sample items are inspected and the non-central chi-square statistic is computed. The proposed chart is not only more sensitive than the joint (X) over bar and R charts, but operationally simpler too, particularly when appropriate devices, such as go-no-go gauges, can be used to decide if the sampling should go on to the second stage or not. (c) 2004 Elsevier B.V. All rights reserved.
Resumo:
In this article, we propose a new statistic to control the covariance matrix of bivariate processes. This new statistic is based on the sample vat-lances of the two quality characteristics, shortly VMAX statistic. The points plotted on the chart correspond to the maximum of the values of these two variances. The reasons to consider the VMAX statistic instead of the generalized variance vertical bar S vertical bar are faster detection of process changes and better diagnostic feature, that is, with the VMAX statistic It is easier to identify the out-of-control variable.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The VSS X chart, dedicated to the detection of small to moderate mean shifts in the process, has been investigated by several researchers under the assumption of known process parameters. In practice, the process parameters are rarely known and are usually estimated from an in-control Phase I data set. In this paper, we evaluate the (run length) performances of the VSS chart when the process parameters are estimated, we compare them in the case where the process parameters are assumed known and we propose specific optimal control chart parameters taking the number of Phase I samples into account.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Recent theoretical studies have shown that the X̄ chart with variable sampling intervals (VSI) and the X̄ chart with variable sample size (VSS) are quicker than the traditional X̄ chart in detecting shifts in the process. This article considers the X̄ chart with variable sample size and sampling intervals (VSSI). It is assumed that the amount of time the process remains in control has exponential distribution. The properties of the VSSI X̄ chart are obtained using Markov chains. The VSSI X̄ chart is even quicker than the VSI or VSS X̄ charts in detecting moderate shifts in the process.