994 resultados para EVOKED RESPONSE
Resumo:
The ventral portion of the medial prefrontal cortex comprises the prelimbic cortex (PL) and the infralimbic cortex (IL). Several studies have indicated that both the PL and the IL play an important role in cardiovascular control. Chemoreflex activation by systemic administration of potassium cyanide (KCN) evokes pressor and bradycardiac responses in conscious rats, in addition to an increase in respiratory frequency. We report here a comparison between the effects of pharmacological inhibition of PL and IL neurotransmission on blood pressure and heart rate responses evoked by chemoreflex activation using KCN (i.v.) in conscious rats. Bilateral microinjection of 200 nl of the unspecific synaptic blocker CoCl(2) (1 mm) into the PL evoked a significant attenuation of the pressor response, without affecting the chemoreflex-induced heart rate decrease. However, IL local synapse inhibition evoked no changes in cardiovascular responses induced by chemoreflex activation. Thus, our results suggest that the pressor but not the bradycardiac response to chemoreflex activation is, at least in part, mediated by local neurotransmission present in the PL cortex, without influence of the IL cortex.
Resumo:
Introduction. Priapism is one of several symptoms observed in accidental bites by the spider Phoneutria nigriventer. The venom of this spider is comprised of many toxins, and the majority has been shown to affect excitable ion channels, mainly sodium (Na+) channels. It has been demonstrated that PnTx2-6, a peptide extracted from the venom of P. nigriventer, causes erection in anesthetized rats and mice. Aim. We investigated the mechanism by which PnTx2-6 evokes relaxation in rat corpus cavernosum. Main Outcome Measures. PnTx2-6 toxin potentiates nitric oxide (NO)-dependent cavernosal relaxation. Methods. Rat cavernosal strips were incubated with bretylium (3 x 10-5 M) and contracted with phenylephrine (PE; 10-5 M). Relaxation responses were evoked by electrical field stimulation (EFS) or sodium nitroprusside (SNP) before and after 4 minutes of incubation with PnTx2-6 (10-8 M). The effect of PnTx2-6 on relaxation induced by EFS was also tested in the presence of atropine (10-6 M), a muscarinic receptor antagonist, N-type Ca2+ channel blockers (omega-conotoxin GVIA, 10-6 M) and sildenafil (3 x 10-8 M). Technetium99m radiolabeled PnTx2-6 subcutaneous injection was administrated in the penis. Results. Whereas relaxation induced by SNP was not affected by PnTx2-6, EFS-induced relaxation was significantly potentiated by this toxin as well as PnTx2-6 plus SNP. This potentiating effect was further increased by sildenafil, not altered by atropine, however was completely blocked by the N-type Ca2+ channels. High concentrated levels of radiolabeled PnTx2-6 was specifically found in the cavernosum tissue, suggesting PnTx2-6 is an important toxin responsible for P. nigriventer spider accident-induced priapism. Conclusion. We show that PnTx2-6 slows Na+ channels inactivation in nitrergic neurons, allowing Ca2+ influx to facilitate NO/cGMP signalling, which promotes increased NO production. In addition, this relaxation effect is independent of phosphodiesterase enzyme type 5 inhibition. Our data displays PnTx2-6 as possible pharmacological tool to study alternative treatments for erectile dysfunction. Nunes KP, Cordeiro MN, Richardson M, Borges MN, Diniz SOF, Cardoso VN, Tostes R, De Lima ME, Webb RC, and Leite R. Nitric oxide-induced vasorelaxation in response to PnTx2-6 toxin from Phoneutria nigriventer spider in rat cavernosal tissue. J Sex Med 2010;7:3879-3888.
Resumo:
Electrical or chemical stimulation of the dorsal periaqueductal gray matter (DPAG) evokes escape, a defensive behavior that has been related to panic attacks. Injection of 5-HT(1A) or 5-HT(2A) receptor agonists into this midbrain area inhibits this response. It has been proposed that the impairment of 5-HT mechanisms controlling escape at the level of the DPAG may underlie the susceptibility to panic attacks that characterizes the panic disorder. In this study we evaluated the effects of the pharmacological manipulation of the dorsal raphe nucleus (DRN), which are the main source of 5-HT input to the DPAG, on the escape response evoked in rats by the intra-DPAG injection of the nitric oxide donor SIN-1. The results showed that DRN administration of the 5-HT(1A) receptor agonist 8-OH-DPAT which inhibits the activity of 5-HT neurons favored the expression of escape induced by SIN-1. Intra-DRN injection of the excitatory amino acid kainic acid or the 5-HT(1A) receptor antagonist WAY-100635 did not change escape expression. However, both compounds fully blocked the escape reaction generated by intra-DPAG injection of the excitatory amino acid D,L-homocysteic acid (DLH). Overall, the results indicate that 5-HT neurons in the DRN exert a bidirectional control upon escape behavior generated by the DPAG. Taking into account the effect of WAY-100635 on DLH-induced escape, they also strengthen the view that DRN 5-HT(1A) autoreceptors are under tonic inhibitory influence by 5-HT. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Activation of 5-HT1A receptors in the dorsal periaqueductal gray (dPAG) impairs escape behavior, suggesting a panicolytic-like effect. Cannabidiol (CBD), a major non-psychotomimetic compound present in Cannabis sativa, causes anxiolytic-like effects after intra-dPAG microinjections by activating 5-HT1A receptors. In the present work we tested the hypothesis that CBD could also impair escape responses evoked by two proposed animal models of panic: the elevated T-maze (ETM) and electric stimulation of dPAG. In experiment 1 male Wistar rats with a single cannula implanted in the dPAG received a microinjection of CBD or vehicle and, 10 min later, were submitted to the ETM and open field tests. In experiment 2 escape electrical threshold was measured in rats with chemitrodes implanted in the dPAG before and 10 min after CBD microinjection. In experiment 3 similar to experiment 2 except that the animals received a previous intra-dPAG administration of WAY-100635, a 5-HT1A receptor antagonist, before CBD treatment. In the ETM microinjection of CBD into the dPAG impaired inhibitory avoidance acquisition, an anxiolytic-like effect, and inhibited escape response, a panicolytic-like effect. The drug also increased escape electrical threshold, an effect that was prevented by WAY-100635. Together, the results suggest that CBD causes panicolytic effects in the dPAG by activating 5-HT1A receptors. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Dynamic exercise evokes sustained cardiovascular changes, which are characterized by blood pressure and heart rate (HR) increases. Although it is well accepted that there is a central nervous system (CNS) mediation of cardiovascular adjustments during dynamic exercise, information on the role of specific CNS structures is limited. The bed nucleus of the stria terminalis (BST) is a forebrain structure known to be involved in central cardiovascular control. Based on this, we tested the hypothesis that BST modulates HR and mean arterial pressure (MAP) responses evoked when rats are submitted to dynamic exercise. Male Wistar rats were tested at three levels of exercise (0.4, 0.8 and 1 km h-1) on a rodent treadmill before and after BST treatment with CoCl(2), a non-selective neurotransmission blocker. Bilateral microinjection of CoCl(2) (1 nmol in 100 nl artificial cerebrospinal fluid) into the BST reduced the pressor response to exercise at 0.4 km h-1 as well as the tachycardic responses evoked by exercise at 0.4, 0.8 and 1 km h-1. The BST treatment with CoCl(2) did not affect baseline MAP or HR, suggesting a lack of tonic BST influence on cardiovascular parameters at rest. Moreover, BST treatment with CoCl(2) did not affect motor performance in the open-field test, which indicates that effects of BST inhibition on cardiovascular responses to dynamic exercise are not due to changes in motor activity. The present results suggest that local neurotransmission in the BST modulates exercise-related cardiovascular adjustments. Data indicate that BST facilitates pressor and tachycardic responses evoked by dynamic exercise in rats.
Resumo:
Microinjection of noradrenaline into the bed nucleus of the stria terminalis (BST) has been reported to cause a pressor response in unanesthetized rats, which was shown to be mediated by acute vasopressin release into the systemic circulation. In the present study we verified the involvement of magnocellular neurons of the hypothalamic paraventricular (PVN) or supraoptic (SON) nuclei and the local neurotransmitter involved in the pressor response to noradrenaline microinjection into the BST. The PVN pretreatment with the non-selective neurotransmission blocker CoCl(2) (1 nmol/100 nL) inhibited the noradrenaline-evoked pressor response. However, responses were not affected by SON treatment with CoCl(2). Further experiments were carried out to test if glutamatergic neurotransmission in the PVN mediates the pressor response evoked by noradrenaline microinjection into the BST. Pretreatment of the PVN with the selective N-methyl-d-aspartate (NMDA) receptor antagonist LY235959 (2 nmol/100 nL) did not affect the noradrenaline-evoked pressor response. However, PVN pretreatment with the selective non-NMDA receptor antagonist NBQX (2 nmol/100 nL) significantly reduced the pressor response to noradrenaline microinjection into the BST. In conclusion, our results suggest that pressor responses to noradrenaline microinjection into the BST are mediated by PVN magnocellular neurons without involvement of SON neurons. They also suggest that a glutamatergic neurotransmission through non-NMDA glutamate receptors in the PVN mediates the response.
Resumo:
Thirty-two pouch-young tammar wallabies were used to discover the generators of the auditory brainstem response (ABR) during development by the use of simultaneous ABR and focal brainstem recordings. A click response from the auditory nerve root (ANR) in the wallaby was recorded from postnatal day (PND) 101, when no central auditory station was functional, and coincided with the ABR, a simple positive wave. The response of the cochlear nucleus (CN) was detected from PND 110, when the ABR had developed 1 positive and 1 negative peak. The dominant component of the focal ANR response, the N-1 wave, coincided with the first half of the ABR P wave, and that of the focal CN response, the N-1 wave, coincided with the later two thirds. In older animals, the ANR response coincided with the ABR's N-1, wave, while the CN response coincided with the ABR's P-2, N-2 and P-3 waves, with its contribution to the ABR P-2 dominant. The protracted development of the marsupial auditory system which facilitated these correlations makes the tammar wallaby a particularly suitable model. Copyright (C) 2001 S. Karger AG, Basel.
Resumo:
Spontaneous and tone-evoked changes in light reflectance were recorded from primary auditory cortex (A1) of anesthetized cats (barbiturate induction, ketamine maintenance). Spontaneous 0.1-Hz oscillations of reflectance of 540- and 690-nm light were recorded in quiet. Stimulation with tone pips evoked localized reflectance decreases at 540 nm in 3/10 cats. The distribution of patches activated by tones of different frequencies reflected the known tonotopic organization of auditory cortex. Stimulus-evoked reflectance changes at 690 nm were observed in 9/10 cats but lacked stimulus-dependent topography. In two experiments, stimulus-evoked optical signals at 540 nm were compared with multiunit responses to the same stimuli recorded at multiple sites. A significant correlation (P < 0.05) between magnitude of reflectance decrease and multiunit response strength was evident in only one of five stimulus conditions in each experiment. There was no significant correlation when data were pooled across all stimulus conditions in either experiment. In one experiment, the spatial distribution of activated patches, evident in records of spontaneous activity at 540 nm, was similar to that of patches activated by tonal stimuli. These results suggest that local cerebral blood volume changes reflect the gross tonotopic organization of A1 but are not restricted to the sites of spiking neurons.
Resumo:
Handedness, as a potentially influencing, nonpathologic factor, has not been investigated in relation to transient evoked otoacoustic emissions (TEOAEs). The present study aimed to examine the effects of handedness on the TEOAE spectrum in entry-level schoolchildren, with attention also to possible ear asymmetry. A total of 228 subjects (114 males, 114 females, mean age = 6.3 years) were tested using the ILO292 Otodynamics Analyzer (Quickscreen mode) in quiet rooms in 22 schools. For statistical analysis, subjects were matched for factors such as handedness, gender, age, and history of recent ear infection. The results from subjects with passing TEOAE, pure-tone screening, and tympanometry revealed no significant handedness effect overall, although a significant ear asymmetry effect on the measurement parameters of AB difference, noise level, response level, whole-wave reproducibility, band reproducibility, and signal-to-noise ratios was found.
Resumo:
Dissertação para obtenção do Grau de Mestre em Engenharia Biomédica
Resumo:
Early visual processing stages have been demonstrated to be impaired in schizophrenia patients and their first-degree relatives. The amplitude and topography of the P1 component of the visual evoked potential (VEP) are both affected; the latter of which indicates alterations in active brain networks between populations. At least two issues remain unresolved. First, the specificity of this deficit (and suitability as an endophenotype) has yet to be established, with evidence for impaired P1 responses in other clinical populations. Second, it remains unknown whether schizophrenia patients exhibit intact functional modulation of the P1 VEP component; an aspect that may assist in distinguishing effects specific to schizophrenia. We applied electrical neuroimaging analyses to VEPs from chronic schizophrenia patients and healthy controls in response to variation in the parafoveal spatial extent of stimuli. Healthy controls demonstrated robust modulation of the VEP strength and topography as a function of the spatial extent of stimuli during the P1 component. By contrast, no such modulations were evident at early latencies in the responses from patients with schizophrenia. Source estimations localized these deficits to the left precuneus and medial inferior parietal cortex. These findings provide insights on potential underlying low-level impairments in schizophrenia.
Resumo:
Addictive properties of drugs of misuse are generally considered to be mediated by an increased release of dopamine (DA) in the ventral striatum. However, recent experiments indicated an implication of alpha1b-adrenergic receptors in behavioural responses to psychostimulants and opiates. We show now that DA release induced in the ventral striatum by morphine (20 mg/kg) is completely blocked by prazosin (1 mg/kg), an alpha1-adrenergic antagonist. However, morphine-induced increases in DA release in the ventral striatum were found to be similar in mice deleted for the alpha1b-adrenergic receptor (alpha1b-AR KO) and in wild-type (WT) mice, suggesting the presence of a compensatory mechanism. This acute morphine-evoked DA release was completely blocked in alpha1b-AR KO mice by SR46349B (1 mg/kg), a 5-HT2A antagonist. SR46349B also completely blocked, in alpha1b-AR KO mice, the locomotor response and the development of behavioural sensitization to morphine (20 mg/kg) and D-amphetamine (2 mg/kg). Accordingly, the concomitant blockade of 5-HT2A and alpha1b-adrenergic receptors in WT mice entirely blocked acute locomotor responses but also the development of behavioural sensitization to morphine, D-amphetamine or cocaine (10 mg/kg). We observed, nevertheless, that inhibitory effects of each antagonist on locomotor responses to morphine or D-amphetamine were more than additive (160%) in naïve WT mice but not in those sensitized to either drug. Because of these latter data and the possible compensation by 5-HT2A receptors for the genetic deletion of alpha1b-adrenergic receptors, we postulate the existence of a functional link between these receptors, which vanishes during the development of behavioural sensitization.
Resumo:
Linking the structural connectivity of brain circuits to their cooperative dynamics and emergent functions is a central aim of neuroscience research. Graph theory has recently been applied to study the structure-function relationship of networks, where dynamical similarity of different nodes has been turned into a "static" functional connection. However, the capability of the brain to adapt, learn and process external stimuli requires a constant dynamical functional rewiring between circuitries and cell assemblies. Hence, we must capture the changes of network functional connectivity over time. Multi-electrode array data present a unique challenge within this framework. We study the dynamics of gamma oscillations in acute slices of the somatosensory cortex from juvenile mice recorded by planar multi-electrode arrays. Bursts of gamma oscillatory activity lasting a few hundred milliseconds could be initiated only by brief trains of electrical stimulations applied at the deepest cortical layers and simultaneously delivered at multiple locations. Local field potentials were used to study the spatio-temporal properties and the instantaneous synchronization profile of the gamma oscillatory activity, combined with current source density (CSD) analysis. Pair-wise differences in the oscillation phase were used to determine the presence of instantaneous synchronization between the different sites of the circuitry during the oscillatory period. Despite variation in the duration of the oscillatory response over successive trials, they showed a constant average power, suggesting that the rate of expenditure of energy during the gamma bursts is consistent across repeated stimulations. Within each gamma burst, the functional connectivity map reflected the columnar organization of the neocortex. Over successive trials, an apparently random rearrangement of the functional connectivity was observed, with a more stable columnar than horizontal organization. This work reveals new features of evoked gamma oscillations in developing cortex.
The role of energetic value in dynamic brain response adaptation during repeated food image viewing.
Resumo:
The repeated presentation of simple objects as well as biologically salient objects can cause the adaptation of behavioral and neural responses during the visual categorization of these objects. Mechanisms of response adaptation during repeated food viewing are of particular interest for better understanding food intake beyond energetic needs. Here, we measured visual evoked potentials (VEPs) and conducted neural source estimations to initial and repeated presentations of high-energy and low-energy foods as well as non-food images. The results of our study show that the behavioral and neural responses to food and food-related objects are not uniformly affected by repetition. While the repetition of images displaying low-energy foods and non-food modulated VEPs as well as their underlying neural sources and increased behavioral categorization accuracy, the responses to high-energy images remained largely invariant between initial and repeated encounters. Brain mechanisms when viewing images of high-energy foods thus appear less susceptible to repetition effects than responses to low-energy and non-food images. This finding is likely related to the superior reward value of high-energy foods and might be one reason why in particular high-energetic foods are indulged although potentially leading to detrimental health consequences.
Resumo:
Little is known about how human amnesia affects the activation of cortical networks during memory processing. In this study, we recorded high-density evoked potentials in 12 healthy control subjects and 11 amnesic patients with various types of brain damage affecting the medial temporal lobes, diencephalic structures, or both. Subjects performed a continuous recognition task composed of meaningful designs. Using whole-scalp spatiotemporal mapping techniques, we found that, during the first 200 ms following picture presentation, map configuration of amnesics and controls were indistinguishable. Beyond this period, processing significantly differed. Between 200 and 350 ms, amnesic patients expressed different topographical maps than controls in response to new and repeated pictures. From 350 to 550 ms, healthy subjects showed modulation of the same maps in response to new and repeated items. In amnesics, by contrast, presentation of repeated items induced different maps, indicating distinct cortical processing of new and old information. The study indicates that cortical mechanisms underlying memory formation and re-activation in amnesia fundamentally differ from normal memory processing.