974 resultados para ESP
Resumo:
Net form of net blotch (NFNB), caused by Pyrenophora teres Drechs. f. teres Smedeg., is a serious disease problem for the barley industry in Australia and other parts of the world. Three doubled haploid barley populations, Alexis/Sloop, WI2875-1/Alexis, and Arapiles/Franklin, were used to identify genes conferring adult plant resistance to NFNB in field trials. Quantitative trait loci (QTLs) identified were specific for adult plant resistance because seedlings of the parental lines were susceptible to the NFNB isolates used in this study. QTLs were identified on chromosomes 2H, 3H, 4H, and 7H in both the Alexis/Sloop and WI2875-1/Alexis populations and on chromosomes 1H, 2H, and 7H in the Arapiles/Franklin population. Using QTLNetwork, epistatic interactions were identified between loci on chromosomes 3H and 6H in the Alexis/Sloop population, between 2H and 4H in the WI2875-1/Alexis population, and between 5H and 7H in the Arapiles/Franklin population. Comparisons with earlier studies of NFNB resistance indicate the pathotype-dependent nature of many resistance QTLs and the importance of establishing an international system of pathotype nomenclature and differential testing.
Resumo:
Marker ordering during linkage map construction is a critical component of QTL mapping research. In recent years, high-throughput genotyping methods have become widely used, and these methods may generate hundreds of markers for a single mapping population. This poses problems for linkage analysis software because the number of possible marker orders increases exponentially as the number of markers increases. In this paper, we tested the accuracy of linkage analyses on simulated recombinant inbred line data using the commonly used Map Manager QTX (Manly et al. 2001: Mammalian Genome 12, 930-932) software and RECORD (Van Os et al. 2005: Theoretical and Applied Genetics 112, 30-40). Accuracy was measured by calculating two scores: % correct marker positions, and a novel, weighted rank-based score derived from the sum of absolute values of true minus observed marker ranks divided by the total number of markers. The accuracy of maps generated using Map Manager QTX was considerably lower than those generated using RECORD. Differences in linkage maps were often observed when marker ordering was performed several times using the identical dataset. In order to test the effect of reducing marker numbers on the stability of marker order, we pruned marker datasets focusing on regions consisting of tightly linked clusters of markers, which included redundant markers. Marker pruning improved the accuracy and stability of linkage maps because a single unambiguous marker order was produced that was consistent across replications of analysis. Marker pruning was also applied to a real barley mapping population and QTL analysis was performed using different map versions produced by the different programs. While some QTLs were identified with both map versions, there were large differences in QTL mapping results. Differences included maximum LOD and R-2 values at QTL peaks and map positions, thus highlighting the importance of marker order for QTL mapping
Resumo:
While the genetic control of wheat processing characteristics such as dough rheology is well understood, limited information is available concerning the genetic control of baking parameters, particularly sponge and dough (S&D) baking. In this study, a quantitative trait loci (QTL) analysis was performed using a population of doubled haploid lines derived from a cross between Australian cultivars Kukri x Janz grown at sites across different Australian wheat production zones (Queensland in 2001 and 2002 and Southern and Northern New South Wales in 2003) in order to examine the genetic control of protein content, protein expression, dough rheology and sponge and dough baking performance. The study highlighted the inconsistent genetic control of protein content across the test sites, with only two loci (3A and 7A) showing QTL at three of the five sites. Dough rheology QTL were highly consistent across the 5 sites, with major effects associated with the Glu-B1 and Glu-D1 loci. The Glu-D1 5 + 10 allele had consistent effects on S&D properties across sites; however, there was no evidence for a positive effect of the high dough strength Glu-B1-al allele at Glu-B1. A second locus on 5D had positive effects on S&D baking at three of five sites. This study demonstrated that dough rheology measurements were poor predictors of S&D quality. In the absence of robust predictive tests, high heritability values for S&D demonstrate that direct selection is the current best option for achieving genetic gain in this product category.
Resumo:
Maize is a highly important crop to many countries around the world, through the sale of the maize crop to domestic processors and subsequent production of maize products and also provides a staple food to subsistance farms in undeveloped countries. In many countries, there have been long-term research efforts to develop a suitable hardness method that could assist the maize industry in improving efficiency in processing as well as possibly providing a quality specification for maize growers, which could attract a premium. This paper focuses specifically on hardness and reviews a number of methodologies as well as important biochemical aspects of maize that contribute to maize hardness used internationally. Numerous foods are produced from maize, and hardness has been described as having an impact on food quality. However, the basis of hardness and measurement of hardness are very general and would apply to any use of maize from any country. From the published literature, it would appear that one of the simpler methods used to measure hardness is a grinding step followed by a sieving step, using multiple sieve sizes. This would allow the range in hardness within a sample as well as average particle size and/or coarse/fine ratio to be calculated. Any of these parameters could easily be used as reference values for the development of near-infrared (NIR) spectroscopy calibrations. The development of precise NIR calibrations will provide an excellent tool for breeders, handlers, and processors to deliver specific cultivars in the case of growers and bulk loads in the case of handlers, thereby ensuring the most efficient use of maize by domestic and international processors. This paper also considers previous research describing the biochemical aspects of maize that have been related to maize hardness. Both starch and protein affect hardness, with most research focusing on the storage proteins (zeins). Both the content and composition of the zein fractions affect hardness. Genotypes and growing environment influence the final protein and starch content and. to a lesser extent, composition. However, hardness is a highly heritable trait and, hence, when a desirable level of hardness is finally agreed upon, the breeders will quickly be able to produce material with the hardness levels required by the industry.
Resumo:
Root-lesion nematodes (Pratylenchus thornei Sher and Allen and P. neglectus (Rensch) Filipijev and Schuurmans Stekhoven) cause substantial yield loss to wheat crops in the northern grain region of Australia. Resistance to P. thornei for use in wheat breeding programs was sought among synthetic hexaploid wheats (2n= 6x = 42, AABBDD) produced through hybridisations of Triticum turgidum L. subsp. durum (Desf.) Husn (2n= 4x = 28, AABB) with Aegilops tauschii Coss. (2n= 2x = 14, DD). Resistance was determined for the synthetic hexaploid wheats and their durum and Ae. tauschii parents from the numbers of nematodes in the roots of plants grown for 16 weeks in pots of pasteurised soil inoculated with P. thornei. Fifty-nine (32%) of 186 accessions of synthetic hexaploid wheats had lower numbers of nematodes than Gatcher Selection 50a (GS50a), a partially resistant bread wheat. Greater frequencies of partial resistance were present in the durum parents (72% of 39 lines having lower nematode numbers than GS50a) and in the Ae. tauschii parents (55% of 53 lines). The 59 synthetic hexaploids were re-tested in a second experiment along with their parents. In a third experiment, 11 resistant synthetic hexaploid wheats and their F-1 hybrids with Janz, a susceptible bread wheat, were tested and the F(1)s were found to give nematode counts intermediate between the respective two parents. Synthetic hexaploid wheats with higher levels of resistance resulted from hybridisations where both the durum and Ae. tauschii parents were partially resistant, rather than where only one parent was partially resistant. These results suggest that resistance to P. thornei in synthetic hexaploid wheats is polygenic, with resistances located both in the D genome from Ae. tauschii and in the A and/or B genomes from durum. Five synthetic hexaploid wheats were selected for further study on the basis of (1) a high level of resistance to P. thornei of the synthetic hexaploid wheats and of both their durum and Ae. tauschii parents, (2) being representative of both Australian and CIMMYT (International Maize and Wheat Improvement Centre) durums, and (3) being representative of the morphological subspecies and varieties of Ae. tauschii. These 5 synthetic hexaploid wheats were also shown to be resistant to P. neglectus, whereas GS50a and 2 P. thornei-resistant derivatives were quite susceptible. Results of P. thornei resistance of F(1)s and F(2)s from a half diallel of these 5 synthetic hexaploid wheats, GS50a, and Janz from another study indicate polygenic additive resistance and better general combining ability for the synthetic hexaploid wheats than for GS50a. Published molecular marker studies on a doubled haploid population between the synthetic hexaploid wheat with best general combining ability (CPI133872) and Janz have shown quantitative trait loci for resistance located in all 3 genomes. Synthetic hexaploid wheats offer a convenient way of introgressing new resistances to P. thornei and P. neglectus from both durum and Ae. tauschii into commercial bread wheats.
Resumo:
Black point (BP) can cause severe losses to the barley industry through downgrading and discounting of malting barley. The genetic improvement in BP resistance of barley is complex, requiring reliable screening tools, an understanding of genotype by environment interactions and an understanding of the biochemical mechanisms of melanisation involved in BP development. Thus the application of molecular markers for resistance to BP may be a useful tool for plant breeders. We have investigated the genetic regions associated with BP resistance in the barley F2 population, Valier/Binalong. Quantitative trait loci (QTLs) contributed by the resistant parent Valier, were detected on chromosomes 2HS, 2HC, 3HL, 4HL and a QTL contributed by the susceptible parent, Binalong was detected on 5HL. Three of the four QTLs were detected in two distinctly different environments. The differences observed in BP resistance between these two environments and the implications for accelerated screening are discussed. Identified SSR markers in these regions may be useful for selecting black point resistance in related breeding materials.
Resumo:
Radish sprouts and broccoli sprouts have been implicated in having a potential chemoprotective effect against certain types of cancer. Each contains a glucosinolate that can be broken down to an isothiocyanate capable of inducing chemoprotective factors known as phase 2 enzymes. In the case of broccoli, the glucosinolate, glucoraphanin, is converted to an isothiocyanate, sulforaphane, while in radish a similar glucosinolate, glucoraphenin, is broken down to form the isothiocyanate, sulforaphene. When sprouts are consumed fresh (uncooked), however, the principal degradation product of broccoli is not the isothiocyanate sulforaphane, but a nitrile, a compound with little anti-cancer potential. By contrast, radish sprouts produce largely the anti-cancer isothiocyanate, sulforaphene. The reason for this difference is likely to be due to the presence in broccoli (and absence in radish) of the enzyme cofactor, epithiospecifier protein (ESP). In vitro induction of the phase 2 enzyme, quinone reductase (QR), was significantly greater for radish sprouts than broccoli sprouts when extracts were self-hydrolysed. By contrast, boiled radish sprout extracts (deactivating ESP) to which myrosinase was subsequently added, induced similar QR activity to broccoli sprouts. The implication is that radish sprouts have potentially greater chemoprotective action against carcinogens than broccoli sprouts when hydrolysed under conditions similar to that during human consumption.
Resumo:
QTL mapping methods for complex traits are challenged by new developments in marker technology, phenotyping platforms, and breeding methods. In meeting these challenges, QTL mapping approaches will need to also acknowledge the central roles of QTL by environment interactions (QEI) and QTL by trait interactions in the expression of complex traits like yield. This paper presents an overview of mixed model QTL methodology that is suitable for many types of populations and that allows predictive modeling of QEI, both for environmental and developmental gradients. Attention is also given to multi-trait QTL models which are essential to interpret the genetic basis of trait correlations. Biophysical (crop growth) model simulations are proposed as a complement to statistical QTL mapping for the interpretation of the nature of QEI and to investigate better methods for the dissection of complex traits into component traits and their genetic controls.
Resumo:
Semi-dwarfing genes have been widely used in spring barley (Hordeum vulgare L.) breeding programs in many parts of the world, but the success in developing barley cultivars with semi-dwarfing genes has been limited in North America. Exploiting new semi-dwarfing genes may help in solving this dilemma. A recombinant inbred line population was developed by crossing ZAU 7, a semi-dwarf cultivar from China, to ND16092, a tall breeding line from North Dakota. To identify quantitative trait loci (QTL) controlling plant height, a linkage map comprised of 111 molecular markers was constructed. Simple interval mapping was performed for each of the eight environments. A consistent QTL for plant height was found on chromosome 7HL. This QTL is not associated with maturity and rachis internode length. We suggest the provisional name Qph-7H for this QTL. Qph-7H from ZAU 7 reduced plant height to about 3/4 of normal; thus, Qph-7H is considered a semi-dwarfing gene. Other QTLs for plant height were found, but their expression was variable across the eight environments tested.
Resumo:
To study the genetic basis of tick burden and milk production and their interrelationship, we collected a sample of 1961 cattle with multiple tick counts from northern Australia of which 973 had dairy production data in the Australian Dairy Herd Information Service database. We calculated heritabilities, genetic and phenotypic correlations for these traits and showed a negative relationship between tick counts and milk and milk component yield. Tests of polymorphisms of four genes associated with milk yield, ABCG2, DGAT1, GHR and PRLR, showed no statistically significant effect on tick burden but highly significant associations to milk component yield in these data and we confirmed separate effects for GHR and PRLR on bovine chromosome 20. To begin to identify some of the molecular genetic bases for these traits, we genotyped a sample of 189 of these cattle for 7397 single nucleotide polymorphisms in a genome-wide association study. Although the allele effects for adjusted milk fat and protein yield were highly correlated (r = 0.66), the correlations of allele effects of these milk component yields and tick burden were small (|r| <= 0.10). These results agree in general with the phenotypic correlations between tick counts and milk component yield and suggest that selection on markers for tick burden or milk component yield may have no undesirable effect on the other trait.
Resumo:
The chemical nature of the hydrolysis products from the glucosinolate-myrosinase system depends on the presence or absence of supplementary proteins such as epithiospecifier proteins (ESPs). ESPs promote the formation of epithionitriles from terminal alkenyl glucosinolates and, as recent evidence suggests, simple nitriles at the expense of isothiocyanates. From a human health perspective isothiocyanates are the most important because they are major inducers of carcinogen-detoxifying enzymes. Fe2+ is an essential factor in ESP activity, although several recent studies have highlighted discrepancies in the understanding of the ESP-iron interaction. To investigate further the role iron species play in regulating ESP activity, four ESP-containing seedpowders were analyzed for ESP and myrosinase activities, endogenous iron content, and glucosinolate degradation products after the addition of iron species, specific chelators, and reducing agents. For the first time this paper shows the effect of these additions on the hydrolysis of individual glucosinolates that constitute the total pool. Aged seeds and 3-day seedlings were also tested to investigate the effects of seed storage and early plant development on iron levels and ESP activity. The four ESP-containing plant systems tested gave two distinctive responses, thus providing strong evidence that ESPs vary markedly in their Fe2+ requirement for activity. The results also indicated that reduction of ferric to ferrous iron drives variations in ESP activity during early plant development. The reverse oxidation reaction provided a convincing explanation for the loss of ESP activity during seed storage. Aged seeds produced seedlings with substantially lower ESP activity, and there was a concomitant loss in germination rate. It was concluded that manipulation of endogenous iron levels of ESP-containing plants could increase the conversion of glucosinolates to isothiocyanates and enhance potential health benefits.
Resumo:
A genetic linkage map, based on a cross between the synthetic hexaploid CPI133872 and the bread wheat cultivar Janz, was established using 111 F1-derived doubled haploid lines. The population was phenotyped in multiple years and/or locations for seven disease resistance traits, namely, Septoria tritici blotch (Mycosphaeralla graminicola), yellow leaf spot also known as tan spot (Pyrenophora tritici-repentis), stripe rust (Puccinia striiformis f. sp. tritici), leaf rust (Puccinia triticina), stem rust (Puccinia graminis f. sp. tritici) and two species of root-lesion nematode (Pratylenchyus thornei and P. neglectus). The DH population was also scored for coleoptile colour and the presence of the seedling leaf rust resistance gene Lr24. Implementation of a multiple-QTL model identified a tightly linked cluster of foliar disease resistance QTL in chromosome 3DL. Major QTL each for resistance to Septoria tritici blotch and yellow leaf spot were contributed by the synthetic hexaploid parent CPI133872 and linked in repulsion with the coincident Lr24Sr24/ locus carried by parent Janz. This is the first report of linked QTL for Septoria tritici blotch and yellow leaf spot contributed by the same parent. Additional QTL for yellow leaf spot were detected in 5AS and 5BL. Consistent QTL for stripe rust resistance were identified in chromosomes 1BL, 4BL and 7DS, with the QTL in 7DS corresponding to the Yr18Lr34/ region. Three major QTL for P. thornei resistance (2BS, 6DS, 6DL) and two for P. neglectus resistance (2BS, 6DS) were detected. The recombinants combining resistance to Septoria tritici blotch, yellow leaf spot, rust diseases and root-lesion nematodes from parents CPI133872 and Janz constitute valuable germplasm for the transfer of multiple disease resistance into new wheat cultivars.
Resumo:
Net type net blotch (NTNB) is an important barley disease in Australia and elsewhere, with significant yield reduction. This trait is important in selection along with other traits of quality and agronomic value. Two-hundred doubled-haploid lines were generated through anther culture from a cross between 'Pompadour' and 'Stirling'. Quantitative trait loci (QTL) were identified against five isolates of Pyrenophora teres f. teres, which represent virulences across Australia. QTL were mapped on chromosomes 3H and 6H using simple sequence repeat (SSR) markers. The resistance locus on 6H was detected with all isolates while the 3H locus was detected with two isolates. The 6H QTL from 'Pompadour' contributed resistance to isolates 97NB1, 95NB100 and NB81, whereas 6H QTL from 'Stirling' contributed resistance to isolates NB50 and NB52B. The 3H QTL from 'Pompadour' contributed resistance to NB50 and NB52B. Significant epistatic interactions were detected between QTL on 3H and 6H. These resistance QTL are a useful resource and identifying closely linked SSR markers with allelic combinations will facilitate in marker-assisted selection to develop NTNB resistant breeding lines.
Resumo:
The Juvenile Wood Initiative (JWI) project has been running successfully since July 2003 under a Research Agreement with FWPA and Letters of Association with the consortium partners STBA (Southern Tree Breeding Association), ArborGen and FPQ (Forestry Plantations Queensland). Over the last five and half years, JWI scientists in CSIRO, FPQ, and STBA have completed all 12 major milestones and 28 component milestones according to the project schedule. We have made benchmark progress in understanding the genetic control of wood formation and interrelationships among wood traits. The project has made 15 primary scientific findings and several results have been adopted by industry as summarized below. This progress was detailed in 10 technical reports to funding organizations and industry clients. Team scientists produced 16 scientific manuscripts (8 published, 1 in press, 2 submitted, and several others in the process of submission) and 15 conference papers or presentations. Primary Scientific Findings. The 15 major scientific findings related to wood science, inheritance and the genetic basis of juvenile wood traits are: 1. An optimal method to predict stiffness of standing trees in slash/Caribbean pine is to combine gravimetric basic density from 12 mm increment cores with a standing tree prediction of MoE using a time of flight acoustic tool. This was the most accurate and cheapest way to rank trees for breeding selection for slash/Caribbean hybrid pine. This method was also recommended for radiata pine. 2. Wood density breeding values were predicted for the first time in the STBA breeding population using a large sample of 7,078 trees (increment cores) and it was estimated that selection of the best 250 trees for deployment will produce wood density gains of 12.4%. 3. Large genetic variation for a suite of wood quality traits including density, MFA, spiral grain, shrinkage, acoustic and non-acoustic stiffness (MoE) for clear wood and standing trees were observed. Genetic gains of between 8 and 49% were predicted for these wood quality traits with selection intensity between 1 to 10% for radiata pine. 4. Site had a major effect on juvenile-mature wood transition age and the effect of selective breeding for a shorter juvenile wood formation phase was only moderate (about 10% genetic gain with 10% selection intensity, equivalent to about 2 years reduction of juvenile wood). 5. The study found no usable site by genotype interactions for the wood quality traits of density, MFA and MoE for both radiata and slash/Caribbean pines, suggesting that assessment of wood properties on one or two sites will provide reliable estimates of the genetic worth of individuals for use in future breeding. 6. There were significant and sizable genotype by environment interactions between the mainland and Tasmanian regions and within Tasmania for DBH and branch size. 7. Strong genetic correlations between rings for density, MFA and MoE for both radiata and slash/Caribbean pines were observed. This suggests that selection for improved wood properties in the innermost rings would also result in improvement of wood properties in the subsequent rings, as well as improved average performance of the entire core. 8. Strong genetic correlations between pure species and hybrid performance for each of the wood quality traits were observed in the hybrid pines. Parental performance can be used to identify the hybrid families which are most likely to have superior juvenile wood properties of the slash/Caribbean F1 hybrid in southeast Queensland. 9. Large unfavourable genetic correlations between growth and wood quality traits were a prominent feature in radiata pine, indicating that overcoming this unfavourable genetic correlation will be a major technical issue in progressing radiata pine breeding. 10. The project created the first radiata pine 18 k cDNA microarray and generated 5,952 radiata pine xylogenesis expressed sequence tags (ESTs) which assembled into 3,304 unigenes. 11. A total of 348 genes were identified as preferentially expressed genes in earlywood or latewood while a total of 168 genes were identified as preferentially expressed genes in either juvenile or mature wood. 12. Juvenile earlywood has a distinct transcriptome relative to other stages of wood development. 13. Discovered rapid decay of linkage disequilibrium (LD) in radiata pine with LD decaying to approximately 50% within 1,700 base pairs (within a typical gene). A total of 913 SNPS from sequencing 177,380 base pairs were identified for association genetic studies. 14. 149 SNPs from 44 genes and 255 SNPs from a further 51 genes (total 95 genes) were selected for association analysis with 62 wood traits, and 30 SNPs were shortlisted for their significant association with variation of wood quality traits (density, MFA and MoE) with individual significant SNPs accounting for between 1.9 and 9.7% of the total genetic variation in traits. 15. Index selection using breeding objectives was the most profitable selection method for radiata pine, but in the long term it may not be the most effective in dealing with negative genetic correlations between wood volume and quality traits. A combination of economic and biological approaches may be needed to deal with the strong adverse correlation.
Resumo:
Major effect genes are often used for germplasm identification, for diversity analyses and as selection targets in breeding. To date, only a few morphological characters have been mapped as major effect genes across a range of genetic linkage maps based on different types of molecular markers in sorghum (Sorghum bicolor (L.) Moench). This study aims to integrate all available previously mapped major effect genes onto a complete genome map, linked to the whole genome sequence, allowing sorghum breeders and researchers to link this information to QTL studies and to be aware of the consequences of selection for major genes. This provides new opportunities for breeders to take advantage of readily scorable morphological traits and to develop more effective breeding strategies. We also provide examples of the impact of selection for major effect genes on quantitative traits in sorghum. The concepts described in this paper have particular application to breeding programmes in developing countries where molecular markers are expensive or impossible to access.