922 resultados para EPITAXIAL MULTILAYERS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fluorine redistribution during partial solid-phase-epitaxial-regrowth at 650°C of a preamorphized Si substrate implanted by F was investigated by atom probe tomography (APT), transmission electron microscopy, and secondary ions mass spectrometry. Three-dimensional spatial distribution of F obtained by APT provides a direct observation of F-rich clusters with a diameter of less than 1.5 nm. Density variation compatible with cavities and F-rich molecular ions in correspondence of clusters are in accordance with cavities filled by SiF 4 molecules. Their presence only in crystalline Si while they are not revealed by statistical analysis in amorphous suggests that they form at the amorphous/crystal interface. © 2012 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Technological progress is determined, to a great extent, by developments in material science. Breakthroughs can happen when a new type of material or new combinations of known materials with different dimensionality and functionality are created. Multilayered structures, being planar or concentric, are now emerging as major players at the forefront of research. Raman spectroscopy is a well-established characterization technique for carbon nanomaterials and is being developed for layered materials. In this issue of ACS Nano, Hirschmann et al. investigate triple-wall carbon nanotubes via resonant Raman spectroscopy, showing how a wealth of information can be derived about these complex structures. The next challenge is to tackle hybrid heterostructures, consisting of different planar or concentric materials, arranged "on demand" to achieve targeted properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate a method to realize vertically oriented Ge nanowires on Si(111) substrates. Ge nanowires were grown by chemical vapor deposition using Au nanoparticles to seed nanowire growth via a vapor-liquid-solid growth mechanism. Rapid oxidation of Si during Au nanoparticle application inhibits the growth of vertically oriented Ge nanowires directly on Si. The present method employs thin Ge buffer layers grown at low temperature less than 600 degrees C to circumvent the oxidation problem. By using a thin Ge buffer layer with root-mean-square roughness of approximately 2 nm, the yield of vertically oriented Ge nanowires is as high as 96.3%. This yield is comparable to that of homoepitaxial Ge nanowires. Furthermore, branched Ge nanowires could be successfully grown on these vertically oriented Ge nanowires by a secondary seeding technique. Since the buffer layers are grown under moderate conditions without any high temperature processing steps, this method has a wide process window highly suitable for Si-based microelectronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We demonstrate vertically aligned epitaxial GaAs nanowires of excellent crystallographic quality and optimal shape, grown by Au nanoparticle-catalyzed metalorganic chemical vapor deposition. This is achieved by a two-temperature growth procedure, consisting of a brief initial high-temperature growth step followed by prolonged growth at a lower temperature. The initial high-temperature step is essential for obtaining straight, vertically aligned epitaxial nanowires on the (111)B GaAs substrate. The lower temperature employed for subsequent growth imparts superior nanowire morphology and crystallographic quality by minimizing radial growth and eliminating twinning defects. Photoluminescence measurements confirm the excellent optical quality of these two-temperature grown nanowires. Two mechanisms are proposed to explain the success of this two-temperature growth process, one involving Au nanoparticle-GaAs interface conditions and the other involving melting-solidification temperature hysteresis of the Au-Ga nanoparticle alloy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, we demonstrate the key issues of axial nanowire heterostructures, such as, the fundamental criteria for formation and failure of axial nanowire heterostructures via vapor-liquid-solid mechanism and lateral misfit strain relaxation in these structures. We show the failure of axial nanowire heterostructures by growing InAs axially on GaAs nanowires, and the lateral misfit strain relaxation by axial growth of GaSb on GaAs nanowires. © 2008 IEEE.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The reaction between an 11 nm Ni(10 at.% Pt) film on a Si substrate has been examined by in situ X-ray diffraction (XRD), atom probe tomography (APT) and transmission electron microscopy (TEM). In situ XRD experiments show the unusual formation of a phase without an XRD peak through consumption of the metal. According to APT, this phase has an Si concentration gradient in accordance with the θ-Ni2Si metastable phase. TEM analysis confirms the direct formation of θ-Ni2Si in epitaxy on Si(1 0 0) with two variants of the epitaxial relationship. © 2014 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have investigated magnetic properties of laterally confined structures of epitaxial Fe films on GaAs (001). Fe films with different thicknesses were grown by molecular-beam epitaxy and patterned into regular arrays of rectangles with varying aspect ratios. In-plane magnetic anisotropy was observed in all of the patterned Fe films both at 15 and 300 K. We have demonstrated that the coercive fields can be tuned by varying the aspect ratios of the structures. The magnitudes of the corresponding anisotropy constants have been determined and the shape anisotropy constant is found to be enhanced as the aspect ratio is increased.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper investigates the major structural parameters, such as crystal quality and strain state of (001)-oriented GaN thin films grown on sapphire substrates by metalorganic chemical vapour deposition, using an in-plane grazing incidence x-ray diffraction technique. The results are analysed and compared with a complementary out-of-plane x-ray diffraction technique. The twist of the GaN mosaic structure is determined through the direct grazing incidence measurement of (100) reflection which agrees well with the result obtained by extrapolation method. The method for directly determining the in-plane lattice parameters of the GaN layers is also presented. Combined with the biaxial strain model, it derives the lattice parameters corresponding to fully relaxed GaN films. The GaN epilayers show an increasing residual compressive stress with increasing layer thickness when the two dimensional growth stage is established, reaching to a maximum level of -0.89 GPa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The investigation on the direct epitaxial quantum wires (QWR) using MBE or MOCVD has been persuited for more than two decades, more lengthy in history as compared with its quantum dot counterpart. Up to now, QWRs with various structural configurations have been produced with different growth methods. This is a reviewing article consisting mainly of two parts. The first part discusses QWRs of various configurations, together with laser devices based on them, in terms of the two growth mechanisms, self-ordering and self-assembling. The second part gives a brief review of the electrical and optical properties of QWRs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

(110) oriented ZnO thin films were epitaxially prepared on (001) SrTiO3 single crystal substrates by a pulsed laser deposition method. The evolution of structure, surface morphology, and electrical conductivity of ZnO films was investigated on changing the growth temperature. Two domain configurations with 90 degrees rotation to each other in the film plane were found to exist to reduce the lattice mismatch between the films and substrates. In the measured temperature range between 80 K and 300 K, the electrical conductivity can be perfectly fitted by a formula of a (T) = sigma(0) + aT(b/2). implying that the electron-phonon scattering might have a significant contribution to the conductivity. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The InAsxSb1-x films were grown on (100) GaSb substrates by liquid-phase epitaxy, and their structural, electrical, and optical properties were investigated. The high-resolution x-ray diffraction results reveal that the single crystalline InAsxSb1-x films with a midrange composition are epitaxially grown on the GaSb substrates. Temperature dependence of the Hall mobility was theoretically modeled by considering several predominant scattering mechanisms. The results indicate that ionized impurity and dislocation scatterings dominate at low temperatures, while polar optical phonon scattering is important at room temperature (RT). Furthermore, the InAsxSb1-x films with the higher As composition exhibit the better crystalline quality and the higher mobility. The InAs0.35Sb0.65 film exhibits a Hall mobility of 4.62x10(4) cm(2) V-1 s(-1). The cutoff wavelength of photoresponse is extended to about 12 mu m with a maximum responsivity of 0.21 V/W at RT, showing great potential for RT long-wavelength infrared detection. (C) 2008 American Institute of Physics. [DOI: 10.1063/1.2989116]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Si-doped ZnO can be synthesized on the surface of the early grown Zn2SiO4 nanostructures and form core/ shell coaxial heterostructure nanobelts with an epitaxial orientation relationship. A parallel interface with a periodicity array of edge dislocations and an inclined interface without dislocations can be formed. The visible green emission is predominant in PL spectra due to carrier localization by high density of deep traps from complexes of impurities and defects. Due to band tail localization induced by composition and defect fluctuation, and high density of free-carriers donated by doping, especially the further dissociation of excitons into free-carriers at high excitation intensity, the near-band-edge emission is dominated by the transition of free-electrons to free-holes, and furthermore, exhibits a significant excitation power-dependent red-shift characteristic. Due to the structure relaxation and the thermalization effects, carrier delocalization takes place in deep traps with increasing excitation density. As a result, the green emission passes through a maximum at 0.25I(0) excitation intensity, and the ratio of the violet to green emission increases monotonously as the excitation laser power density increases. The violet and green emission of ZnO nanostructures can be well tuned by a moderate doping and a variation in the excitation density.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Raman scattering (RS) experiments have been performed for simultaneous determination of Mn composition and strain in Ga1-xMnxSb thin films grown on GaSb substrate by liquid phase epitaxy technique. The Raman spectra obtained from various Ga1-xMnxSb samples show only GaSb-like phonon modes whose frequency positions are found to have Mn compositional dependence. With the combination of epilayer strain model, RS and energy dispersive x-ray (EDX) experiments, the compositional dependence of GaSb-like LO phonon frequency is proposed both in strained and unstrained conditions. The proposed relationships are used to evaluate Mn composition and strain from the Ga1-xMnxSb samples. The results obtained from the RS data are found to be in good agreement with those determined independently by the EDX analysis. Furthermore, the frequency positions of MnSb-like phonon modes are suggested by reduced-mass model. (C) 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim