947 resultados para ENGINEERING, INDUSTRIAL
Resumo:
This research document is motivated by the need for a systemic, efficient quality improvement methodology at universities. There exists no methodology designed for a total quality management (TQM) program in a university. The main objective of this study is to develop a TQM Methodology that enables a university to efficiently develop an integral total quality improvement (TQM) Plan. ^ Current research focuses on the need of improving the quality of universities, the study of the perceived best quality universities, and the measurement of the quality of universities through rankings. There is no evidence of research on how to plan for an integral quality improvement initiative for the university as a whole, which is the main contribution of this study. ^ This research is built on various reference TQM models and criteria provided by ISO 9000, Baldrige and Six Sigma; and educational accreditation criteria found in ABET and SACS. The TQM methodology is proposed by following a seven-step metamethodology. The proposed methodology guides the user to develop a TQM plan in five sequential phases: initiation, assessment, analysis, preparation and acceptance. Each phase defines for the user its purpose, key activities, input requirements, controls, deliverables, and tools to use. The application of quality concepts in education and higher education is particular; since there are unique factors in education which ought to be considered. These factors shape the quality dimensions in a university and are the main inputs to the methodology. ^ The proposed TQM Methodology is used to guide the user to collect and transform appropriate inputs to a holistic TQM Plan, ready to be implemented by the university. Different input data will lead to a unique TQM plan for the specific university at the time. It may not necessarily transform the university into a world-class institution, but aims to strive for stakeholder-oriented improvements, leading to a better alignment with its mission and total quality advancement. ^ The proposed TQM methodology is validated in three steps. First, it is verified by going through a test activity as part of the meta-methodology. Secondly, the methodology is applied to a case university to develop a TQM plan. Lastly, the methodology and the TQM plan both are verified by an expert group consisting of TQM specialists and university administrators. The proposed TQM methodology is applicable to any university at all levels of advancement, regardless of changes in its long-term vision and short-term needs. It helps to assure the quality of a TQM plan, while making the process more systemic, efficient, and cost effective. This research establishes a framework with a solid foundation for extending the proposed TQM methodology into other industries. ^
Resumo:
The span of control is the most discussed single concept in classical and modern management theory. In specifying conditions for organizational effectiveness, the span of control has generally been regarded as a critical factor. Existing research work has focused mainly on qualitative methods to analyze this concept, for example heuristic rules based on experiences and/or intuition. This research takes a quantitative approach to this problem and formulates it as a binary integer model, which is used as a tool to study the organizational design issue. This model considers a range of requirements affecting management and supervision of a given set of jobs in a company. These decision variables include allocation of jobs to workers, considering complexity and compatibility of each job with respect to workers, and the requirement of management for planning, execution, training, and control activities in a hierarchical organization. The objective of the model is minimal operations cost, which is the sum of supervision costs at each level of the hierarchy, and the costs of workers assigned to jobs. The model is intended for application in the make-to-order industries as a design tool. It could also be applied to make-to-stock companies as an evaluation tool, to assess the optimality of their current organizational structure. Extensive experiments were conducted to validate the model, to study its behavior, and to evaluate the impact of changing parameters with practical problems. This research proposes a meta-heuristic approach to solving large-size problems, based on the concept of greedy algorithms and the Meta-RaPS algorithm. The proposed heuristic was evaluated with two measures of performance: solution quality and computational speed. The quality is assessed by comparing the obtained objective function value to the one achieved by the optimal solution. The computational efficiency is assessed by comparing the computer time used by the proposed heuristic to the time taken by a commercial software system. Test results show the proposed heuristic procedure generates good solutions in a time-efficient manner.
Resumo:
This research is motivated by the need for considering lot sizing while accepting customer orders in a make-to-order (MTO) environment, in which each customer order must be delivered by its due date. Job shop is the typical operation model used in an MTO operation, where the production planner must make three concurrent decisions; they are order selection, lot size, and job schedule. These decisions are usually treated separately in the literature and are mostly led to heuristic solutions. The first phase of the study is focused on a formal definition of the problem. Mathematical programming techniques are applied to modeling this problem in terms of its objective, decision variables, and constraints. A commercial solver, CPLEX is applied to solve the resulting mixed-integer linear programming model with small instances to validate the mathematical formulation. The computational result shows it is not practical for solving problems of industrial size, using a commercial solver. The second phase of this study is focused on development of an effective solution approach to this problem of large scale. The proposed solution approach is an iterative process involving three sequential decision steps of order selection, lot sizing, and lot scheduling. A range of simple sequencing rules are identified for each of the three subproblems. Using computer simulation as the tool, an experiment is designed to evaluate their performance against a set of system parameters. For order selection, the proposed weighted most profit rule performs the best. The shifting bottleneck and the earliest operation finish time both are the best scheduling rules. For lot sizing, the proposed minimum cost increase heuristic, based on the Dixon-Silver method performs the best, when the demand-to-capacity ratio at the bottleneck machine is high. The proposed minimum cost heuristic, based on the Wagner-Whitin algorithm is the best lot-sizing heuristic for shops of a low demand-to-capacity ratio. The proposed heuristic is applied to an industrial case to further evaluate its performance. The result shows it can improve an average of total profit by 16.62%. This research contributes to the production planning research community with a complete mathematical definition of the problem and an effective solution approach to solving the problem of industry scale.
Resumo:
This research aims at a study of the hybrid flow shop problem which has parallel batch-processing machines in one stage and discrete-processing machines in other stages to process jobs of arbitrary sizes. The objective is to minimize the makespan for a set of jobs. The problem is denoted as: FF: batch1,sj:Cmax. The problem is formulated as a mixed-integer linear program. The commercial solver, AMPL/CPLEX, is used to solve problem instances to their optimality. Experimental results show that AMPL/CPLEX requires considerable time to find the optimal solution for even a small size problem, i.e., a 6-job instance requires 2 hours in average. A bottleneck-first-decomposition heuristic (BFD) is proposed in this study to overcome the computational (time) problem encountered while using the commercial solver. The proposed BFD heuristic is inspired by the shifting bottleneck heuristic. It decomposes the entire problem into three sub-problems, and schedules the sub-problems one by one. The proposed BFD heuristic consists of four major steps: formulating sub-problems, prioritizing sub-problems, solving sub-problems and re-scheduling. For solving the sub-problems, two heuristic algorithms are proposed; one for scheduling a hybrid flow shop with discrete processing machines, and the other for scheduling parallel batching machines (single stage). Both consider job arrival and delivery times. An experiment design is conducted to evaluate the effectiveness of the proposed BFD, which is further evaluated against a set of common heuristics including a randomized greedy heuristic and five dispatching rules. The results show that the proposed BFD heuristic outperforms all these algorithms. To evaluate the quality of the heuristic solution, a procedure is developed to calculate a lower bound of makespan for the problem under study. The lower bound obtained is tighter than other bounds developed for related problems in literature. A meta-search approach based on the Genetic Algorithm concept is developed to evaluate the significance of further improving the solution obtained from the proposed BFD heuristic. The experiment indicates that it reduces the makespan by 1.93 % in average within a negligible time when problem size is less than 50 jobs.
Resumo:
Enterprise Resource Planning (ERP) systems are software programs designed to integrate the functional requirements, and operational information needs of a business. Pressures of competition and entry standards for participation in major manufacturing supply chains are creating greater demand for small business ERP systems. The proliferation of new offerings of ERP systems introduces complexity to the selection process to identify the right ERP business software for a small and medium-sized enterprise (SME). The selection of an ERP system is a process in which a faulty conclusion poses a significant risk of failure to SME’s. The literature reveals that there are still very high failure rates in ERP implementation, and that faulty selection processes contribute to this failure rate. However, the literature is devoid of a systematic methodology for the selection process for an ERP system by SME’s. This study provides a methodological approach to selecting the right ERP system for a small or medium-sized enterprise. The study employs Thomann’s meta-methodology for methodology development; a survey of SME’s is conducted to inform the development of the methodology, and a case study is employed to test, and revise the new methodology. The study shows that a rigorously developed, effective methodology that includes benchmarking experiences has been developed and successfully employed. It is verified that the methodology may be applied to the domain of users it was developed to serve, and that the test results are validated by expert users and stakeholders. Future research should investigate in greater detail the application of meta-methodologies to supplier selection and evaluation processes for services and software; additional research into the purchasing practices of small firms is clearly needed.^
Resumo:
Construction organizations typically deal with large volumes of project data containing valuable information. It is found that these organizations do not use these data effectively for planning and decision-making. There are two reasons. First, the information systems in construction organizations are designed to support day-to-day construction operations. The data stored in these systems are often non-validated, non-integrated and are available in a format that makes it difficult for decision makers to use in order to make timely decisions. Second, the organizational structure and the IT infrastructure are often not compatible with the information systems thereby resulting in higher operational costs and lower productivity. These two issues have been investigated in this research with the objective of developing systems that are structured for effective decision-making. ^ A framework was developed to guide storage and retrieval of validated and integrated data for timely decision-making and to enable construction organizations to redesign their organizational structure and IT infrastructure matched with information system capabilities. The research was focused on construction owner organizations that were continuously involved in multiple construction projects. Action research and Data warehousing techniques were used to develop the framework. ^ One hundred and sixty-three construction owner organizations were surveyed in order to assess their data needs, data management practices and extent of use of information systems in planning and decision-making. For in-depth analysis, Miami-Dade Transit (MDT) was selected which is in-charge of all transportation-related construction projects in the Miami-Dade county. A functional model and a prototype system were developed to test the framework. The results revealed significant improvements in data management and decision-support operations that were examined through various qualitative (ease in data access, data quality, response time, productivity improvement, etc.) and quantitative (time savings and operational cost savings) measures. The research results were first validated by MDT and then by a representative group of twenty construction owner organizations involved in various types of construction projects. ^
Resumo:
The increasing emphasis on mass customization, shortened product lifecycles, synchronized supply chains, when coupled with advances in information system, is driving most firms towards make-to-order (MTO) operations. Increasing global competition, lower profit margins, and higher customer expectations force the MTO firms to plan its capacity by managing the effective demand. The goal of this research was to maximize the operational profits of a make-to-order operation by selectively accepting incoming customer orders and simultaneously allocating capacity for them at the sales stage. ^ For integrating the two decisions, a Mixed-Integer Linear Program (MILP) was formulated which can aid an operations manager in an MTO environment to select a set of potential customer orders such that all the selected orders are fulfilled by their deadline. The proposed model combines order acceptance/rejection decision with detailed scheduling. Experiments with the formulation indicate that for larger problem sizes, the computational time required to determine an optimal solution is prohibitive. This formulation inherits a block diagonal structure, and can be decomposed into one or more sub-problems (i.e. one sub-problem for each customer order) and a master problem by applying Dantzig-Wolfe’s decomposition principles. To efficiently solve the original MILP, an exact Branch-and-Price algorithm was successfully developed. Various approximation algorithms were developed to further improve the runtime. Experiments conducted unequivocally show the efficiency of these algorithms compared to a commercial optimization solver.^ The existing literature addresses the static order acceptance problem for a single machine environment having regular capacity with an objective to maximize profits and a penalty for tardiness. This dissertation has solved the order acceptance and capacity planning problem for a job shop environment with multiple resources. Both regular and overtime resources is considered. ^ The Branch-and-Price algorithms developed in this dissertation are faster and can be incorporated in a decision support system which can be used on a daily basis to help make intelligent decisions in a MTO operation.^
Resumo:
Variable Speed Limit (VSL) strategies identify and disseminate dynamic speed limits that are determined to be appropriate based on prevailing traffic conditions, road surface conditions, and weather conditions. This dissertation develops and evaluates a shockwave-based VSL system that uses a heuristic switching logic-based controller with specified thresholds of prevailing traffic flow conditions. The system aims to improve operations and mobility at critical bottlenecks. Before traffic breakdown occurrence, the proposed VSL’s goal is to prevent or postpone breakdown by decreasing the inflow and achieving uniform distribution in speed and flow. After breakdown occurrence, the VSL system aims to dampen traffic congestion by reducing the inflow traffic to the congested area and increasing the bottleneck capacity by deactivating the VSL at the head of the congested area. The shockwave-based VSL system pushes the VSL location upstream as the congested area propagates upstream. In addition to testing the system using infrastructure detector-based data, this dissertation investigates the use of Connected Vehicle trajectory data as input to the shockwave-based VSL system performance. Since the field Connected Vehicle data are not available, as part of this research, Vehicle-to-Infrastructure communication is modeled in the microscopic simulation to obtain individual vehicle trajectories. In this system, wavelet transform is used to analyze aggregated individual vehicles’ speed data to determine the locations of congestion. The currently recommended calibration procedures of simulation models are generally based on the capacity, volume and system-performance values and do not specifically examine traffic breakdown characteristics. However, since the proposed VSL strategies are countermeasures to the impacts of breakdown conditions, considering breakdown characteristics in the calibration procedure is important to have a reliable assessment. Several enhancements were proposed in this study to account for the breakdown characteristics at bottleneck locations in the calibration process. In this dissertation, performance of shockwave-based VSL is compared to VSL systems with different fixed VSL message sign locations utilizing the calibrated microscopic model. The results show that shockwave-based VSL outperforms fixed-location VSL systems, and it can considerably decrease the maximum back of queue and duration of breakdown while increasing the average speed during breakdown.
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
Thesis (Master's)--University of Washington, 2016-08
Resumo:
The job security issue is crucial for the development of construction due to the need to ensure the health of workers, which is done by means of laws and production management. Thus, among various other laws, was enacted NR-18, in order to ensure the worker's minimum conditions for the development work. Despite legislative developments on the subject, they have become ineffective against the excessive number of accidents in the construction industry, bringing the company to greater in ensuring the health and safety of its workers. In view of this need for improvement of working environment in a general appearance, both for purposes of ensuring the law obedience as comfort for workers and quality of the organization, the System Health Management and Safety (OHSMS) is a valid tool demonstrates the evolution of business management, as well as OHSAS 18001 which proposes to ensure the efficiency and integration of a system geared to safety and health at work by means of implements and adaptations of it, in order to bring significant improvements to conditions of work, especially in the form of a new culture to be adopted by the company. Addressing the problem, this paper aims to develop a management system by OHSAS 18001 which is consistent with the terms of NR-18 as it is this integration of OHSMS Management System of the company as a usual practice of that aims at an improvement of work safety in the business of Buildings.
Resumo:
Esta dissertação foi desenvolvida no âmbito do 2º ano do Mestrado em Engenharia Mecânica – Ramo de Gestão Industrial no Instituto Superior de Engenharia do Porto. Este projeto realizou-se em ambiente industrial, nomeadamente na Tubembal, S.A. uma empresa localizada no concelho da Trofa, distrito do Porto. Esta empresa dedica-se à transformação de papel e comércio de embalagens, produz tubos e cantoneiras de cartão e é atualmente a maior empresa do sector na Península Ibérica. Esta dissertação baseia-se na aplicação de ferramentas Lean, numa perspetiva de melhoria de um ambiente produtivo industrial, melhorando o desempenho dos processos existentes e consequentemente a produtividade da empresa em estudo, com o objetivo de a tornar mais competitiva num ambiente global. A metodologia Lean tem como principal objetivo a eliminação de desperdício em toda a cadeia de valor e neste sentido surge como fundamental numa cultura de melhoria contínua e focalização no cliente, que se pretende instalar nesta empresa. Foi realizada uma análise profunda a toda a cadeia de valor como forma de identificar os maiores desperdícios e posteriormente apresentadas medidas para combater estes mesmos desperdícios, podendo assim reduzir custos. No projeto de melhoria apresentado à organização constam como principais ações, a implementação da metodologia 5S’s como ferramenta essencial para mudança de hábitos dos funcionários e integração e envolvimento de todos num mesmo projeto comum, na busca da melhoria contínua. Procedeu-se ainda à simulação de algumas propostas de reorganização do layout de forma a encontrar aquela que minimizasse os custos com movimentações e garantisse um fluxo controlado e em segurança dos produtos e pessoas dentro da fábrica. As propostas apresentadas mostram que a reorganização do layout da fábrica pode trazer ganhos significativos para a empresa, redução direta no tempo perdido em deslocações e maior disponibilidade dos meios e consequente direta redução dos custos. Todas as propostas apresentadas visam a adaptação da empresa a um modelo mais dinâmico de negócio, capaz de responder rápida e eficazmente aos seus clientes, adaptando-se ao mercado e garantindo a sua sustentabilidade num futuro próximo.
Resumo:
New technical and procedural interventions are less likely to be adopted in industry, unless they are smoothly integrated into the existing practices of professionals. In this paper, we provide a case study of the use of ethnographic methods for studying software bug-fixing activities at an industrial engineering conglomerate. We aimed at getting an in-depth understanding of software developers' everyday practices in bug-fixing related projects and in turn inform the design of novel productivity tools. The use of ethnography has allowed us to look at the social side of software maintenance practices. In this paper, we highlight: 1) organizational issues that influence bug-fixing activities; 2) social role of bug tracking systems, and; 3) social issues specific to different phases of bug-fixing activities.
Resumo:
V. Robinson, N. W. Hardy, D. P. Barnes, C. J. Price, M. H. Lee. Experiences with a knowledge engineering toolkit: an assessment in industrial robotics. Knowledge Engineering Review, 2 (1):43-54, 1987.
Resumo:
Permeable reactive barriers are a technology that is one decade old, with most full-scale applications based on abiotic mechanisms. Though there is extensive literature on engineered bioreactors, natural biodegradation potential, and in situ remediation, it is only recently that engineered passive bioreactive barrier technology is being considered at the commercial scale to manage contaminated soil and groundwater risks. Recent full-scale studies are providing the scientific confidence in our understanding of coupled microbial (and genetic), hydrogeologic, and geochemical processes in this approach and have highlighted the need to further integrate engineering and science tools.