950 resultados para ENDOTHELIAL-CELL APOPTOSIS


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The receptor tyrosine kinase Tie2, and its activating ligand Angiopoietin-1 (Ang1), are required for vascular remodelling and vessel integrity, whereas Ang2 may counteract these functions. However, it is not known how Tie2 transduces these different signals. Here, we show that Ang1 induces unique Tie2 complexes in mobile and confluent endothelial cells. Matrix-bound Ang1 induced cell adhesion, motility and Tie2 activation in cell-matrix contacts that became translocated to the trailing edge in migrating endothelial cells. In contrast, in contacting cells Ang1 induced Tie2 translocation to cell-cell contacts and the formation of homotypic Tie2-Tie2 trans-associated complexes that included the vascular endothelial phosphotyrosine phosphatase, leading to inhibition of paracellular permeability. Distinct signalling proteins were preferentially activated by Tie2 in the cell-matrix and cell-cell contacts, where Ang2 inhibited Ang1-induced Tie2 activation. This novel type of cellular microenvironment-dependent receptor tyrosine kinase activation may explain some of the effects of angiopoietins in angiogenesis and vessel stabilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Studying the interactions between xenoreactive antibodies, complement and coagulation factors with the endothelium in hyperacute and acute vascular rejection usually necessitates the use of in vivo models. Conventional in vitro or ex vivo systems require either serum, plasma or anti-coagulated whole blood, making analysis of coagulation-mediated effects difficult. Here a novel in vitro microcarrier-based system for the study of endothelial cell (EC) activation and damage, using non-anticoagulated whole blood is described. Once established, the model was used to study the effect of the characterized complement- and coagulation inhibitor dextran sulfate (DXS, MW 5000) for its EC protective properties in a xenotransplantation setting. METHODS: Porcine aortic endothelial cells (PAEC), grown to confluence on microcarrier beads, were incubated with non-anticoagulated whole human blood until coagulation occurred or for a maximum of 90 min. PAEC-beads were either pre- or co-incubated with DXS. Phosphate buffered saline (PBS) experiments served as controls. Fluid phase and surface activation markers for complement and coagulation were analyzed as well as binding of DXS to PAEC-beads. RESULTS: Co- as well as pre-incubation of DXS, followed by washing of the beads, significantly prolonged time to coagulation from 39 +/- 12 min (PBS control) to 74 +/- 23 and 77 +/- 20 min, respectively (P < 0.005 vs. PBS). DXS treatment attenuated surface deposition of C1q, C4b/c, C3b/c and C5b-9 without affecting IgG or IgM deposition. Endothelial integrity, expressed by positivity for von Willebrand Factor, was maintained longer with DXS treatment. Compared with PBS controls, both pre- and co-incubation with DXS significantly prolonged activated partial thromboplastin time (>300 s, P < 0.05) and reduced production of thrombin-antithrombin complexes and fibrinopeptide A. Whilst DXS co-incubation completely blocked classical pathway complement activity (CH50 test) DXS pre-incubation or PBS control experiments showed no inhibition. DXS bound to PAEC-beads as visualized using fluorescein-labeled DXS. CONCLUSIONS: This novel in vitro microcarrier model can be used to study EC damage and the complex interactions with whole blood as well as screen ''endothelial protective'' substances in a xenotransplantation setting. DXS provides EC protection in this in vitro setting, attenuating damage of ECs as seen in hyperacute xenograft rejection.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND: Activation of endothelial cells (EC) in xenotransplantation is mostly induced through binding of antibodies (Ab) and activation of the complement system. Activated EC lose their heparan sulfate proteoglycan (HSPG) layer and exhibit a procoagulant and pro-inflammatory cell surface. We have recently shown that the semi-synthetic proteoglycan analog dextran sulfate (DXS, MW 5000) blocks activation of the complement cascade and acts as an EC-protectant both in vitro and in vivo. However, DXS is a strong anticoagulant and systemic use of this substance in a clinical setting might therefore be compromised. It was the aim of this study to investigate a novel, fully synthetic EC-protectant with reduced inhibition of the coagulation system. METHOD: By screening with standard complement (CH50) and coagulation assays (activated partial thromboplastin time, aPTT), a conjugate of tyrosine sulfate to a polymer-backbone (sTyr-PAA) was identified as a candidate EC-protectant. The pathway-specificity of complement inhibition by sTyr-PAA was tested in hemolytic assays. To further characterize the substance, the effects of sTyr-PAA and DXS on complement deposition on pig cells were compared by flow cytometry and cytotoxicity assays. Using fluorescein-labeled sTyr-PAA (sTyr-PAA-Fluo), the binding of sTyr-PAA to cell surfaces was also investigated. RESULTS: Of all tested compounds, sTyr-PAA was the most effective substance in inhibiting all three pathways of complement activation. Its capacity to inhibit the coagulation cascade was significantly reduced as compared with DXS. sTyr-PAA also dose-dependently inhibited deposition of human complement on pig cells and this inhibition correlated with the binding of sTyr-PAA to the cells. Moreover, we were able to demonstrate that sTyr-PAA binds preferentially and dose-dependently to damaged EC. CONCLUSIONS: We could show that sTyr-PAA acts as an EC-protectant by binding to the cells and protecting them from complement-mediated damage. It has less effect on the coagulation system than DXS and may therefore have potential for in vivo application.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We showed recently that low molecular weight dextran sulfate (DXS) acts as an endothelial cell (EC) protectant and prevents human complement- and NK cell-mediated cytotoxicity towards porcine cells in vitro. We therefore hypothesized that DXS, combined with cyclosporine A (CyA), could prevent acute vascular rejection (AVR) in the hamster-to-rat cardiac xenotransplantation model. Untreated, CyA-only, and DXS-only treated rats rejected their grafts within 4-5 days. Of the hearts grafted into rats receiving DXS in combination with CyA, 28% survived more than 30 days. Deposition of anti-hamster antibodies and complement was detected in long-term surviving grafts. Combined with the expression of hemoxygenase 1 (HO-1) on graft EC, these results indicate that accommodation had occurred. Complement activity was normal in rat sera after DXS injection, and while systemic inhibition of the coagulation cascade was observed 1 h after DXS injection, it was absent after 24 h. Moreover, using a fluorescein-labeled DXS (DXS-Fluo) injected 1 day after surgery, we observed a specific binding of DXS-Fluo to the xenograft endothelium. In conclusion, we show here that DXS + CyA induces long-term xenograft survival and we provide evidence that DXS might act as a local EC protectant also in vivo.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Leukocyte transmigration is mediated by endothelial cell (EC) junctional molecules, but the associated mechanisms remain unclear. Here we investigate how intercellular adhesion molecule-2 (ICAM-2), junctional adhesion molecule-A (JAM-A), and platelet endothelial cell adhesion molecule (PECAM-1) mediate neutrophil transmigration in a stimulus-dependent manner (eg, as induced by interleukin-1beta [IL-1beta] but not tumor necrosis factor-alpha [TNF-alpha]), and demonstrate their ability to act in sequence. Using a cell-transfer technique, transmigration responses of wild-type and TNF-alpha p55/p75 receptor-deficient leukocytes (TNFR(-/-)) through mouse cremasteric venules were quantified by fluorescence intravital microscopy. Whereas wild-type leukocytes showed a normal transmigration response to TNF-alpha in ICAM-2(-/-), JAM-A(-/-), and PECAM-1(-/-) recipient mice, TNFR(-/-) leukocytes exhibited a reduced transmigration response. Hence, when the ability of TNF-alpha to directly stimulate neutrophils is blocked, TNF-alpha-induced neutrophil transmigration is rendered dependent on ICAM-2, JAM-A, and PECAM-1, suggesting that the stimulus-dependent role of these molecules is governed by the target cell being activated. Furthermore, analysis of the site of arrest of neutrophils in inflamed tissues from ICAM-2(-/-), JAM-A(-/-), and PECAM-1(-/-) mice demonstrated that these molecules act sequentially to mediate transmigration. Collectively, the findings provide novel insights into the mechanisms of action of key molecules implicated in leukocyte transmigration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Epithelial cells of different phenotypes derived from bovine corpus luteum have been studied intensively in our laboratory. In this study, specific lectin binding was examined for cells of type 1 and 3, which were defined as endothelial cells. In order to confirm differences in their glycocalyx at the light microscopic level, five biotinylated lectins were applied to postconfluent cultures which had been fixed with buffered paraformaldehyde or glutaraldehyde. Cells were not permeabilized with any detergent. Lectin binding was localized with a streptavidin-peroxidase complex which was visualized with two different techniques. The DAB technique detected peroxidase histochemically, while the immunogold technique used an anti-peroxidase gold complex together with silver amplification. Neither cell type 1 nor cell type 3 bound a particular lectin selectively, yet each cell type expressed a particular lectin binding pattern. With the DAB technique, diverse lectin binding patterns were seen, probably indicating either "outside" binding, i.e., a diffuse pattern, a lateral-cell-side pattern and a microvillus-like pattern, or "inside" binding, i.e., a diffuse pattern, and a granule-like pattern. With the immunogold technique, only "outside" binding was observed. In addition, the patterns of single cilia or of single circles were detected, the latter roughly representing 3-micron-sized binding sites for concanavalin A. When localizing them at the ultrastructural level, single circles corresponded with micron-sized discontinuities of the plasma membrane. Shedding vesicles were detected whose outer membrane was labelled with concanavalin A. Our results confirm the diversity of the two cell types under study. The "inside" lectin binding may be caused by way of transient plasma membrane openings and related to shedding of right-side out vesicles ("ectocytosis").

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Jak-stat pathway is critical for cellular proliferation and is commonly found to be deregulated in many solid tumors as well as hematological malignancies. Such findings have spurred the development of novel therapeutic agents that specifically inhibit Jak2 kinase, thereby suppressing tumor cell growth. Tyrphostin AG490, the first described Jak2 inhibitor, displays poor pharmacology and requires high concentrations for anti-tumor activities. Our research group screened a small library of AG490 structural analogues and identified WP1130 as a potent inhibitor of Jak2 signaling. However, unlike AG490, WP1130 did not directly inhibit Jak2 kinase activity. Our results show that WP1130 induces rapid ubiquitination and subsequent re-localization of Jak2 into signaling incompetent aggresomes. In addition to Jak2, WP1130 also induces accumulation of other ubiquitinated proteins without inhibiting 20S proteasome activity. Further analysis of the mechanism of action of WP1130 revealed that WP1130 acts as a partly selective DUB inhibitor. It specifically inhibits the deubiquitinase activity of USP9x, USP5, USP14 and UCH37. WP1130 mediated inhibition of tumor-associated DUBs resulted in down-regulation of anti-apoptotic and up-regulation of pro-apoptotic proteins, such as MCL-1 and p53 respectively. Our results demonstrate that chemical modification of a previously described Jak2 inhibitor results in the unexpected discovery of a novel compound which acts as a DUB inhibitor, suppressing Jak-Stat signaling by a novel mechanism.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

TNF-α (tumor necrosis factor-α) is a potent pro-inflammatory cytokine that regulates the permeability of blood and lymphatic vessels. The plasma concentration of TNF-α is elevated (> 1 pg/mL) in several pathologies, including rheumatoid arthritis, atherosclerosis, cancer, pre-eclampsia; in obese individuals; and in trauma patients. To test whether circulating TNF-α could induce similar alterations in different districts along the vascular system, three endothelial cell lines, namely HUVEC, HPMEC, and HCAEC, were characterized in terms of 1) mechanical properties, employing atomic force microscopy; 2) cytoskeletal organization, through fluorescence microscopy; and 3) membrane overexpression of adhesion molecules, employing ELISA and immunostaining. Upon stimulation with TNF-α (10 ng/mL for 20 h), for all three endothelial cells, the mechanical stiffness increased by about 50% with a mean apparent elastic modulus of E ~5 ± 0.5 kPa (~3.3 ± 0.35 kPa for the control cells); the density of F-actin filaments increased in the apical and median planes; and the ICAM-1 receptors were overexpressed compared with controls. Collectively, these results demonstrate that sufficiently high levels of circulating TNF-α have similar effects on different endothelial districts, and provide additional information for unraveling the possible correlations between circulating pro-inflammatory cytokines and systemic vascular dysfunction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The development of lymph nodes (LNs) and formation of LN stromal cell microenvironments is dependent on lymphotoxin-β receptor (LTβR) signaling. In particular, the LTβR-dependent crosstalk between mesenchymal lymphoid tissue organizer and hematopoietic lymphoid tissue inducer cells has been regarded as critical for these processes. Here, we assessed whether endothelial cell (EC)-restricted LTβR signaling impacts on LN development and the vascular LN microenvironment. Using EC-specific ablation of LTβR in mice, we found that conditionally LTβR-deficient animals failed to develop a significant proportion of their peripheral LNs. However, remnant LNs showed impaired formation of high endothelial venules (HEVs). Venules had lost their cuboidal shape, showed reduced segment length and branching points, and reduced adhesion molecule and constitutive chemokine expression. Due to the altered EC-lymphocyte interaction, homing of lymphocytes to peripheral LNs was significantly impaired. Thus, this study identifies ECs as an important LTβR-dependent lymphoid tissue organizer cell population and indicates that continuous triggering of the LTβR on LN ECs is critical for lymphocyte homeostasis.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic hepatitis occurs when effector lymphocytes are recruited to the liver from blood and retained in tissue to interact with target cells, such as hepatocytes or bile ducts (BDs). Vascular cell adhesion molecule 1 (VCAM-1; CD106), a member of the immunoglobulin superfamily, supports leukocyte adhesion by binding a4b1 integrins and is critical for the recruitment of monocytes and lymphocytes during inflammation. We detected VCAM-1 on cholangiocytes in chronic liver disease (CLD) and hypothesized that biliary expression of VCAM-1 contributes to the persistence of liver inflammation. Hence, in this study, we examined whether cholangiocyte expression of VCAM-1 promotes the survival of intrahepatic a4b1 expressing effector T cells. We examined interactions between primary human cholangiocytes and isolated intrahepatic T cells ex vivo and in vivo using the Ova-bil antigen-driven murine model of biliary inflammation. VCAM-1 was detected on BDs in CLDs (primary biliary cirrhosis, primary sclerosing cholangitis, alcoholic liver disease, and chronic hepatitis C), and human cholangiocytes expressed VCAM-1 in response to tumor necrosis factor alpha alone or in combination with CD40L or interleukin-17. Liver-derived T cells adhered to cholangiocytes in vitro by a4b1, which resulted in signaling through nuclear factor kappa B p65, protein kinase B1, and p38 mitogen-activated protein kinase phosphorylation. This led to increased mitochondrial B-cell lymphoma 2 accumulation and decreased activation of caspase 3, causing increased cell survival. We confirmed our findings in a murine model of hepatobiliary inflammation where inhibition of VCAM-1 decreased liver inflammation by reducing lymphocyte recruitment and increasing CD8 and T helper 17 CD4 Tcell survival. Conclusions: VCAM-1 expression by cholangiocytes contributes to persistent inflammation by conferring a survival signal to a4b1 expressing proinflammatory T lymphocytes in CLD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immunomodulatory FTY720 (fingolimod) is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that acts by modulating sphingosine 1-phosphate (S1P) receptor signaling. In this study, we have developed and characterized two novel oxazolo-oxazole derivatives of FTY720, ST-968 and the oxy analog ST-1071, which require no preceding activating phosphorylation, and proved to be active in intact cells and triggered S1P1 and S1P3, but not S1P2, receptor internalization as a result of receptor activation. Functionally, ST-968 and ST-1071 acted similar to FTY720 to abrogate S1P-triggered chemotaxis of mouse splenocytes, mouse T cells and human U937 cells, and reduced TNFa- and LPS-stimulated endothelial cell permeability. The compounds also reduced TNFα-induced ICAM-1 and VCAM-1 mRNA expression, but restored TNFα-mediated downregulation of PECAM-1 mRNA expression. In an in vivo setting, the application of ST-968 or ST-1071 to mice resulted in a reduction of blood lymphocytes and significantly reduced the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice comparable to FTY720 either by prophylactic or therapeutic treatment. In parallel to the reduced clinical symptoms, infiltration of immune cells in the brain was strongly reduced, and in isolated tissues of brain and spinal cord, the mRNA and protein expressions of ICAM-1 and VCAM-1, as well as of matrix metalloproteinase-9 were reduced by all compounds, whereas PECAM-1 and tissue inhibitor of metalloproteinase TIMP-1 were upregulated. In summary, the data suggest that these novel butterfly derivatives of FTY720 could have considerable implication for future therapies of multiple sclerosis and other autoimmune diseases.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Angiogenesis and vascular remodelling are crucial events in tissue repair mechanisms promoted by cell transplantation. Current evidence underscores the importance of the soluble factors secreted by stem cells in tissue regeneration. In the present study we investigated the effects of paracrine factors derived from cultured endothelial progenitor cells (EPC) on rat brain endothelial cell properties and addressed the signaling pathways involved. METHODS Endothelial cells derived from rat brain (rBCEC4) were incubated with EPC-derived conditioned medium (EPC-CM). The angiogenic response of rBCEC4 to EPC-CM was assessed as effect on cell number, migration and tubular network formation. In addition, we have compared the outcome of the in vitro experiments with the effects on capillary sprouting from rat aortic rings. The specific PI3K/AKT inhibitor LY294002 and the MEK/ERK inhibitor PD98059 were used to study the involvement of these two signaling pathways in the transduction of the angiogenic effects of EPC-CM. RESULTS Viable cell number, migration and tubule network formation were significantly augmented upon incubation with EPC-CM. Similar findings were observed for aortic ring outgrowth with significantly longer sprouts. The EPC-CM-induced activities were significantly reduced by the blockage of the PI3K/AKT and MEK/ERK signaling pathways. Similarly to the outcome of the rBCEC4 experiments, inhibition of the PI3K/AKT and MEK/ERK pathways significantly interfered with capillary sprouting induced by EPC-CM. CONCLUSION The present study demonstrates that EPC-derived paracrine factors substantially promote the angiogenic response of brain microvascular endothelial cells. In addition, our findings identified the PI3K/AKT and MEK/ERK pathways to play a central role in mediating these effects.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

OBJECTIVES Previous studies concluded that haemorrhage is one of the most accurate prognostic factors of mortality in leptospirosis. Therefore, endothelial cell activation was investigated in relation to disease severity in severe leptospirosis. METHODS Prospective cohort study of severe leptospirosis patients. Plasma levels of sE-selectin and Von Willebrand factor (VWF) were determined. Consequently, an in vitro endothelial cell model was used to assess endothelial activation after exposure to virulent Leptospira. Finally, immune activation, as a potential contributing factor to endothelial cell activation, was determined by soluble IL2-receptor (sIL-2r) and soluble Fas-ligand (sFasL) levels. RESULTS Plasma levels of sE-selectin and VWF strongly increased in patients compared to healthy controls. Furthermore, sE-selectin was significantly elevated (203 ng/ml vs. 157 ng/ml, p < 0.05) in survivors compared to non-survivors. Endothelial cells exposed to virulent Leptospira showed increased VWF expression. E-selectin and ICAM-1 expression did not change. Immunohistochemistry revealed the presence of intracellular Leptospira and qPCR suggested replication. In vivo analysis showed that increased levels of sFasL and sIL-2r were both strongly associated with mortality. Furthermore sIL-2r levels were increased in patients that developed bleeding and significantly correlated to duration of hospital stay. DISCUSSION Markers of endothelial activation and immune activation were associated with disease severity in leptospirosis patients.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Definitive fate of the coronary endothelium after implantation of a drug-eluting stent remains unclear, but evidence has accumulated that treatment with rapamycin-eluting stents impairs endothelial function in human coronary arteries. The aim of our study was to demonstrate this phenomenon on functional, morphological and biochemical level in human internal thoracic arteries (ITA) serving as coronary artery model. METHODS After exposure to rapamycin for 20 h, functional activity of ITA rings was investigated using the organ bath technique. Morphological analysis was performed by scanning electron microscopy and evaluated by two independent observers in blinded fashion. For measurement of endothelial nitric oxide synthase (eNOS) release, mammalian target of rapamycin (mTOR) and protein kinase B (PKB) (Akt) activation, Western blotting on human mammary epithelial cells-1 and on ITA homogenates was performed. RESULTS Comparison of the acetylcholine-induced relaxation revealed a significant concentration-dependent decrease to 66 ± 7 % and 36 ± 7 % (mean ± SEM) after 20-h incubation with 1 and 10 μM rapamycin. Electron microscopic evaluation of the endothelial layer showed no differences between controls and samples exposed to 10 μM rapamycin. Western blots after 20-h incubation with rapamycin (10 nM-1 μM) revealed a significant and concentration-dependent reduction of p (Ser 1177)-eNOS (down to 38 ± 8 %) in human mammary epithelial cells (Hmec)-1. Furthermore, 1 μM rapamycin significantly reduced activation of p (Ser2481)-mTOR (58 ± 11 %), p (Ser2481)-mTOR (23 ± 4 %) and p (Ser473)-Akt (38 ± 6 %) in ITA homogenates leaving Akt protein levels unchanged. CONCLUSIONS The present data suggests that 20-h exposure of ITA rings to rapamycin reduces endothelium-mediated relaxation through down-regulation of Akt-phosphorylation via the mTOR signalling axis within the ITA tissue without injuring the endothelial cell layer.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Plasmodium berghei is the causative agent of rodent malaria and is widely used as a model system to study the liver stage of Plasmodium parasites. The entry of P. berghei sporozoites into hepatocytes has extensively been studied, but little is known about parasite-host interaction during later developmental stages of the intracellular parasite. Growth of the parasite far beyond the normal size of the host cell is an important stress factor for the infected cell. Cell stress is known to trigger programmed cell death (apoptosis) and we examined several apoptotic markers in P. berghei-infected cells and compared their level of expression and their distribution to that of non-infected cells. As none of the apoptotic markers investigated were found altered in infected cells, we hypothesized that parasite infection might confer resistance to apoptosis of the host cell. Treatment with peroxide or serum deprivation induced apoptosis in non-infected HepG2 cells, whereas P. berghei-infected cells appeared protected, indicating that the parasite interferes indeed with the apoptotic machinery of the host cell. To prove the physiological relevance of these results, mice were infected with high numbers of P. berghei sporozoites and treated with tumour necrosis factor (TNF)-alpha/D-galactosamine to induce massive liver apoptosis. Liver sections of these mice, stained for degraded DNA, confirmed that infected cells containing viable parasites were protected from programmed cell death. However, in non-treated control mice as well as in TNF-alpha-treated mice a small proportion of dead intracellular parasites with degraded DNA were detected. Most hepatocytes containing dead parasites provoked an infiltration of immunocompetent cells, indicating that these cells are no longer protected from cell death.