995 resultados para ELECTRICAL IMPEDANCE TOMOGRAPHY
Resumo:
Three-dimensional modeling of piezoelectric devices requires a precise knowledge of piezoelectric material parameters. The commonly used piezoelectric materials belong to the 6mm symmetry class, which have ten independent constants. In this work, a methodology to obtain precise material constants over a wide frequency band through finite element analysis of a piezoceramic disk is presented. Given an experimental electrical impedance curve and a first estimate for the piezoelectric material properties, the objective is to find the material properties that minimize the difference between the electrical impedance calculated by the finite element method and that obtained experimentally by an electrical impedance analyzer. The methodology consists of four basic steps: experimental measurement, identification of vibration modes and their sensitivity to material constants, a preliminary identification algorithm, and final refinement of the material constants using an optimization algorithm. The application of the methodology is exemplified using a hard lead zirconate titanate piezoceramic. The same methodology is applied to a soft piezoceramic. The errors in the identification of each parameter are statistically estimated in both cases, and are less than 0.6% for elastic constants, and less than 6.3% for dielectric and piezoelectric constants.
Resumo:
A finite element analysis and a parametric optimization of single-axis acoustic levitators are presented. The finite element method is used to simulate a levitator consisting of a Langevin ultrasonic transducer with a plane radiating surface and a plane reflector. The transducer electrical impedance, the transducer face displacement, and the acoustic radiation potential that acts on small spheres are determined by the finite element method. The numerical electrical impedance is compared with that acquired experimentally by an impedance analyzer, and the predicted displacement is compared with that obtained by a fiber-optic vibration sensor. The numerical acoustic radiation potential is verified experimentally by placing small spheres in the levitator. The same procedure is used to optimize a levitator consisting of a curved reflector and a concave-faced transducer. The numerical results show that the acoustic radiation force in the new levitator is enhanced 604 times compared with the levitator consisting of a plane transducer and a plane reflector. The optimized levitator is able to levitate 3, 2.5-mm diameter steel spheres with a power consumption of only 0.9 W.
Resumo:
The application of functionally graded material (FGM) concept to piezoelectric transducers allows the design of composite transducers without interfaces, due to the continuous change of property values. Thus, large improvements can be achieved, as reduction of stress concentration, increasing of bonding strength, and bandwidth. This work proposes to design and to model FGM piezoelectric transducers and to compare their performance with non-FGM ones. Analytical and finite element (FE) modeling of FGM piezoelectric transducers radiating a plane pressure wave in fluid medium are developed and their results are compared. The ANSYS software is used for the FE modeling. The analytical model is based on FGM-equivalent acoustic transmission-line model, which is implemented using MATLAB software. Two cases are considered: (i) the transducer emits a pressure wave in water and it is composed of a graded piezoceramic disk, and backing and matching layers made of homogeneous materials; (ii) the transducer has no backing and matching layer; in this case, no external load is simulated. Time and frequency pressure responses are obtained through a transient analysis. The material properties are graded along thickness direction. Linear and exponential gradation functions are implemented to illustrate the influence of gradation on the transducer pressure response, electrical impedance, and resonance frequencies. (C) 2009 Elsevier B. V. All rights reserved.
Resumo:
Mestrado em Tecnologia de Diagnóstico e Intervenção Cardiovascular. Área de especialização: Intervenção Cardiovascular.
Resumo:
The initial goal of this work was the development of a supported liquid membrane (SLM) bioreactor for the remediation of vaccine production effluents contaminated with a highly toxic organomercurial – thiomersal. Therefore, two main aspects were focused on: 1) the development of a stable supported liquid membrane – using room temperature ionic liquids (RTILs) – for the selective transport of thiomersal from the wastewater to a biological compartment, 2) study of the biodegradation kinetics of thiomersal to metallic mercury by a Pseudomonas putida strain. The first part of the work focused on the evaluation of the physicochemical properties of ionic liquids and on the SLMs’ operational stability. The results obtained showed that, although it is possible to obtain a SLM with a high stability, water possesses nonnegligible solubility in the RTILs studied. The formation of water clusters inside the hydrophobic ionic liquid was identified and found to regulate the transport of water and small ions. In practical terms, this meant that, although it was possible to transport thiomersal from the vaccine effluent to the biological compartment, complete isolation of the microbial culture could not be guaranteed and the membrane might ultimately be permeable to other species present in the aqueous vaccine wastewater. It was therefore decided not to operate the initially targeted integrated system but, instead, the biological system by itself. Additionally, attention was given to the development of a thorough understanding of the transport mechanisms involved in the solubilisation and transport of water through supported liquid membranes with RTILs as well as to the evaluation of the effect of water uptake by the SLM in the transport mechanisms of water-soluble solutes and its effect on SLM performance. The results obtained highlighted the determinant role played by water – solubilised inside the ionic liquids – on the transport mechanism. It became clear that the transport mechanism of water and water-soluble solutes through SLMs with [CnMIM][PF6] RTILs was regulated by the dynamics of water clusters inside the RTIL, rather than by molecular diffusion through the bulk of the ionic liquid. Although the stability tests vi performed showed that there were no significant losses of organic phase from the membrane pores, the formation of water clusters inside the ionic liquid, which constitute new, non-selective environments for solute transport, leads to a clear deterioration of SLM performance and selectivity. Nevertheless, electrical impedance spectroscopy characterisation of the SLMs showed that the formation of water clusters did not seem to have a detrimental effect on the SLMs’ electrical characteristics and highlighted the potential of using this type of membranes in electrochemical applications with low resistance requirements. The second part of the work studied the kinetics of thiomersal degradation by a pure culture of P. putida spi3 strain, in batch culture and using a synthe tic wastewater. A continuous ly stirred tank reactor fed with the synthetic wastewater was also operated and the bioreactor’s performance and robustness, when exposed to thiomersal shock loads, were evaluated. Finally, a bioreactor for the biological treatment of a real va ccine production effluent was set up and operated at different dilution rates. Thus it was possible to treat a real thiomersal-contaminated effluent, lowering the outlet mercury concentration to values below the European limit for mercury effluent discharges.
Resumo:
Leaves are mainly responsible for food production in vascular plants. Studying individual leaves can reveal important characteristics of the whole plant, namely its health condition, nutrient status, the presence of viruses and rooting ability. One technique that has been used for this purpose is Electrical Impedance Spectroscopy, which consists of determining the electrical impedance spectrum of the leaf. In this paper we use EIS and apply the tools of Fractional Calculus to model and characterize six species. Two modeling approaches are proposed: firstly, Resistance, Inductance, Capacitance electrical networks are used to approximate the leaves’ impedance spectra; afterwards, fractional-order transfer functions are considered. In both cases the model parameters can be correlated with physical characteristics of the leaves.
Resumo:
In recent years, significant research in the field of electrochemistry was developed. The performance of electrical devices, depending on the processes of the electrolytes, was described and the physical origin of each parameter was established. However, the influence of the irregularity of the electrodes was not a subject of study and only recently this problem became relevant in the viewpoint of fractional calculus. This paper describes an electrolytic process in the perspective of fractional order capacitors. In this line of thought, are developed several experiments for measuring the electrical impedance of the devices. The results are analyzed through the frequency response, revealing capacitances of fractional order that can constitute an alternative to the classical integer order elements. Fractional order electric circuits are used to model and study the performance of the electrolyte processes.
Resumo:
1st ASPIC International Congress
Resumo:
This paper characterizes four ‘fractal vegetables’: (i) cauliflower (brassica oleracea var. Botrytis); (ii) broccoli (brassica oleracea var. italica); (iii) round cabbage (brassica oleracea var. capitata) and (iv) Brussels sprout (brassica oleracea var. gemmifera), by means of electrical impedance spectroscopy and fractional calculus tools. Experimental data is approximated using fractional-order models and the corresponding parameters are determined with a genetic algorithm. The Havriliak-Negami five-parameter model fits well into the data, demonstrating that classical formulae can constitute simple and reliable models to characterize biological structures.
Resumo:
The effect of freeze–thaw cycles on concrete is of great importance for durability evaluation of concrete structures in cold regions. In this paper, damage accumulation was studied by following the fractional change of impedance (FCI) with number of freeze–thaw cycles (N). The nano-carbon black (NCB), carbon fiber (CF) and steel fiber (SF) were added to plain concrete to produce the triphasic electrical conductive (TEC) and ductile concrete. The effects of NCB, CF and SF on the compressive strength, flexural properties, electrical impedance were investigated. The concrete beams with different dosages of conductive materials were studied for FCI, N and mass loss (ML), the relationship between FCI and N of conductive concrete can be well defined by a first order exponential decay curve. It is noted that this nondestructive and sensitive real-time testing method is meaningful for evaluating of freeze–thaw damage in concrete.
Resumo:
Dissertação de mestrado em Arqueologia
Resumo:
RESUME Durant les dernières années, les méthodes électriques ont souvent été utilisées pour l'investigation des structures de subsurface. L'imagerie électrique (Electrical Resistivity Tomography, ERT) est une technique de prospection non-invasive et spatialement intégrée. La méthode ERT a subi des améliorations significatives avec le développement de nouveaux algorithmes d'inversion et le perfectionnement des techniques d'acquisition. La technologie multicanale et les ordinateurs de dernière génération permettent la collecte et le traitement de données en quelques heures. Les domaines d'application sont nombreux et divers: géologie et hydrogéologie, génie civil et géotechnique, archéologie et études environnementales. En particulier, les méthodes électriques sont souvent employées dans l'étude hydrologique de la zone vadose. Le but de ce travail est le développement d'un système de monitorage 3D automatique, non- invasif, fiable, peu coûteux, basé sur une technique multicanale et approprié pour suivre les variations de résistivité électrique dans le sous-sol lors d'événements pluvieux. En raison des limitations techniques et afin d'éviter toute perturbation physique dans la subsurface, ce dispositif de mesure emploie une installation non-conventionnelle, où toutes les électrodes de courant sont placées au bord de la zone d'étude. Le dispositif le plus approprié pour suivre les variations verticales et latérales de la résistivité électrique à partir d'une installation permanente a été choisi à l'aide de modélisations numériques. Les résultats démontrent que le dispositif pôle-dipôle offre une meilleure résolution que le dispositif pôle-pôle et plus apte à détecter les variations latérales et verticales de la résistivité électrique, et cela malgré la configuration non-conventionnelle des électrodes. Pour tester l'efficacité du système proposé, des données de terrain ont été collectées sur un site d'étude expérimental. La technique de monitorage utilisée permet de suivre le processus d'infiltration 3D pendant des événements pluvieux. Une bonne corrélation est observée entre les résultats de modélisation numérique et les données de terrain, confirmant par ailleurs que le dispositif pôle-dipôle offre une meilleure résolution que le dispositif pôle-pôle. La nouvelle technique de monitorage 3D de résistivité électrique permet de caractériser les zones d'écoulement préférentiel et de caractériser le rôle de la lithologie et de la pédologie de manière quantitative dans les processus hydrologiques responsables d'écoulement de crue. ABSTRACT During the last years, electrical methods were often used for the investigation of subsurface structures. Electrical resistivity tomography (ERT) has been reported to be a useful non-invasive and spatially integrative prospecting technique. The ERT method provides significant improvements, with the developments of new inversion algorithms, and the increasing efficiency of data collection techniques. Multichannel technology and powerful computers allow collecting and processing resistivity data within few hours. Application domains are numerous and varied: geology and hydrogeology, civil engineering and geotechnics, archaeology and environmental studies. In particular, electrical methods are commonly used in hydrological studies of the vadose zone. The aim of this study was to develop a multichannel, automatic, non-invasive, reliable and inexpensive 3D monitoring system designed to follow electrical resistivity variations in soil during rainfall. Because of technical limitations and in order to not disturb the subsurface, the proposed measurement device uses a non-conventional electrode set-up, where all the current electrodes are located near the edges of the survey grid. Using numerical modelling, the most appropriate arrays were selected to detect vertical and lateral variations of the electrical resistivity in the framework of a permanent surveying installation system. The results show that a pole-dipole array has a better resolution than a pole-pole array and can successfully follow vertical and lateral resistivity variations despite the non-conventional electrode configuration used. Field data are then collected at a test site to assess the efficiency of the proposed monitoring technique. The system allows following the 3D infiltration processes during a rainfall event. A good correlation between the results of numerical modelling and field data results can be observed since the field pole-dipole data give a better resolution image than the pole-pole data. The new device and technique makes it possible to better characterize the zones of preferential flow and to quantify the role of lithology and pedology in flood- generating hydrological processes.
Resumo:
Des progrès significatifs ont été réalisés dans le domaine de l'intégration quantitative des données géophysique et hydrologique l'échelle locale. Cependant, l'extension à de plus grandes échelles des approches correspondantes constitue encore un défi majeur. Il est néanmoins extrêmement important de relever ce défi pour développer des modèles fiables de flux des eaux souterraines et de transport de contaminant. Pour résoudre ce problème, j'ai développé une technique d'intégration des données hydrogéophysiques basée sur une procédure bayésienne de simulation séquentielle en deux étapes. Cette procédure vise des problèmes à plus grande échelle. L'objectif est de simuler la distribution d'un paramètre hydraulique cible à partir, d'une part, de mesures d'un paramètre géophysique pertinent qui couvrent l'espace de manière exhaustive, mais avec une faible résolution (spatiale) et, d'autre part, de mesures locales de très haute résolution des mêmes paramètres géophysique et hydraulique. Pour cela, mon algorithme lie dans un premier temps les données géophysiques de faible et de haute résolution à travers une procédure de réduction déchelle. Les données géophysiques régionales réduites sont ensuite reliées au champ du paramètre hydraulique à haute résolution. J'illustre d'abord l'application de cette nouvelle approche dintégration des données à une base de données synthétiques réaliste. Celle-ci est constituée de mesures de conductivité hydraulique et électrique de haute résolution réalisées dans les mêmes forages ainsi que destimations des conductivités électriques obtenues à partir de mesures de tomographic de résistivité électrique (ERT) sur l'ensemble de l'espace. Ces dernières mesures ont une faible résolution spatiale. La viabilité globale de cette méthode est testée en effectuant les simulations de flux et de transport au travers du modèle original du champ de conductivité hydraulique ainsi que du modèle simulé. Les simulations sont alors comparées. Les résultats obtenus indiquent que la procédure dintégration des données proposée permet d'obtenir des estimations de la conductivité en adéquation avec la structure à grande échelle ainsi que des predictions fiables des caractéristiques de transports sur des distances de moyenne à grande échelle. Les résultats correspondant au scénario de terrain indiquent que l'approche d'intégration des données nouvellement mise au point est capable d'appréhender correctement les hétérogénéitées à petite échelle aussi bien que les tendances à gande échelle du champ hydraulique prévalent. Les résultats montrent également une flexibilté remarquable et une robustesse de cette nouvelle approche dintégration des données. De ce fait, elle est susceptible d'être appliquée à un large éventail de données géophysiques et hydrologiques, à toutes les gammes déchelles. Dans la deuxième partie de ma thèse, j'évalue en détail la viabilité du réechantillonnage geostatique séquentiel comme mécanisme de proposition pour les méthodes Markov Chain Monte Carlo (MCMC) appliquées à des probmes inverses géophysiques et hydrologiques de grande dimension . L'objectif est de permettre une quantification plus précise et plus réaliste des incertitudes associées aux modèles obtenus. En considérant une série dexemples de tomographic radar puits à puits, j'étudie deux classes de stratégies de rééchantillonnage spatial en considérant leur habilité à générer efficacement et précisément des réalisations de la distribution postérieure bayésienne. Les résultats obtenus montrent que, malgré sa popularité, le réechantillonnage séquentiel est plutôt inefficace à générer des échantillons postérieurs indépendants pour des études de cas synthétiques réalistes, notamment pour le cas assez communs et importants où il existe de fortes corrélations spatiales entre le modèle et les paramètres. Pour résoudre ce problème, j'ai développé un nouvelle approche de perturbation basée sur une déformation progressive. Cette approche est flexible en ce qui concerne le nombre de paramètres du modèle et lintensité de la perturbation. Par rapport au rééchantillonage séquentiel, cette nouvelle approche s'avère être très efficace pour diminuer le nombre requis d'itérations pour générer des échantillons indépendants à partir de la distribution postérieure bayésienne. - Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending corresponding approaches beyond the local scale still represents a major challenge, yet is critically important for the development of reliable groundwater flow and contaminant transport models. To address this issue, I have developed a hydrogeophysical data integration technique based on a two-step Bayesian sequential simulation procedure that is specifically targeted towards larger-scale problems. The objective is to simulate the distribution of a target hydraulic parameter based on spatially exhaustive, but poorly resolved, measurements of a pertinent geophysical parameter and locally highly resolved, but spatially sparse, measurements of the considered geophysical and hydraulic parameters. To this end, my algorithm links the low- and high-resolution geophysical data via a downscaling procedure before relating the downscaled regional-scale geophysical data to the high-resolution hydraulic parameter field. I first illustrate the application of this novel data integration approach to a realistic synthetic database consisting of collocated high-resolution borehole measurements of the hydraulic and electrical conductivities and spatially exhaustive, low-resolution electrical conductivity estimates obtained from electrical resistivity tomography (ERT). The overall viability of this method is tested and verified by performing and comparing flow and transport simulations through the original and simulated hydraulic conductivity fields. The corresponding results indicate that the proposed data integration procedure does indeed allow for obtaining faithful estimates of the larger-scale hydraulic conductivity structure and reliable predictions of the transport characteristics over medium- to regional-scale distances. The approach is then applied to a corresponding field scenario consisting of collocated high- resolution measurements of the electrical conductivity, as measured using a cone penetrometer testing (CPT) system, and the hydraulic conductivity, as estimated from electromagnetic flowmeter and slug test measurements, in combination with spatially exhaustive low-resolution electrical conductivity estimates obtained from surface-based electrical resistivity tomography (ERT). The corresponding results indicate that the newly developed data integration approach is indeed capable of adequately capturing both the small-scale heterogeneity as well as the larger-scale trend of the prevailing hydraulic conductivity field. The results also indicate that this novel data integration approach is remarkably flexible and robust and hence can be expected to be applicable to a wide range of geophysical and hydrological data at all scale ranges. In the second part of my thesis, I evaluate in detail the viability of sequential geostatistical resampling as a proposal mechanism for Markov Chain Monte Carlo (MCMC) methods applied to high-dimensional geophysical and hydrological inverse problems in order to allow for a more accurate and realistic quantification of the uncertainty associated with the thus inferred models. Focusing on a series of pertinent crosshole georadar tomographic examples, I investigated two classes of geostatistical resampling strategies with regard to their ability to efficiently and accurately generate independent realizations from the Bayesian posterior distribution. The corresponding results indicate that, despite its popularity, sequential resampling is rather inefficient at drawing independent posterior samples for realistic synthetic case studies, notably for the practically common and important scenario of pronounced spatial correlation between model parameters. To address this issue, I have developed a new gradual-deformation-based perturbation approach, which is flexible with regard to the number of model parameters as well as the perturbation strength. Compared to sequential resampling, this newly proposed approach was proven to be highly effective in decreasing the number of iterations required for drawing independent samples from the Bayesian posterior distribution.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale. However, extending the corresponding approaches to the scale of a field site represents a major, and as-of-yet largely unresolved, challenge. To address this problem, we have developed downscaling procedure based on a non-linear Bayesian sequential simulation approach. The main objective of this algorithm is to estimate the value of the sparsely sampled hydraulic conductivity at non-sampled locations based on its relation to the electrical conductivity logged at collocated wells and surface resistivity measurements, which are available throughout the studied site. The in situ relationship between the hydraulic and electrical conductivities is described through a non-parametric multivariatekernel density function. Then a stochastic integration of low-resolution, large-scale electrical resistivity tomography (ERT) data in combination with high-resolution, local-scale downhole measurements of the hydraulic and electrical conductivities is applied. The overall viability of this downscaling approach is tested and validated by comparing flow and transport simulation through the original and the upscaled hydraulic conductivity fields. Our results indicate that the proposed procedure allows obtaining remarkably faithful estimates of the regional-scale hydraulic conductivity structure and correspondingly reliable predictions of the transport characteristics over relatively long distances.
Resumo:
Significant progress has been made with regard to the quantitative integration of geophysical and hydrological data at the local scale for the purpose of improving predictions of groundwater flow and solute transport. However, extending corresponding approaches to the regional scale still represents one of the major challenges in the domain of hydrogeophysics. To address this problem, we have developed a regional-scale data integration methodology based on a two-step Bayesian sequential simulation approach. Our objective is to generate high-resolution stochastic realizations of the regional-scale hydraulic conductivity field in the common case where there exist spatially exhaustive but poorly resolved measurements of a related geophysical parameter, as well as highly resolved but spatially sparse collocated measurements of this geophysical parameter and the hydraulic conductivity. To integrate this multi-scale, multi-parameter database, we first link the low- and high-resolution geophysical data via a stochastic downscaling procedure. This is followed by relating the downscaled geophysical data to the high-resolution hydraulic conductivity distribution. After outlining the general methodology of the approach, we demonstrate its application to a realistic synthetic example where we consider as data high-resolution measurements of the hydraulic and electrical conductivities at a small number of borehole locations, as well as spatially exhaustive, low-resolution estimates of the electrical conductivity obtained from surface-based electrical resistivity tomography. The different stochastic realizations of the hydraulic conductivity field obtained using our procedure are validated by comparing their solute transport behaviour with that of the underlying ?true? hydraulic conductivity field. We find that, even in the presence of strong subsurface heterogeneity, our proposed procedure allows for the generation of faithful representations of the regional-scale hydraulic conductivity structure and reliable predictions of solute transport over long, regional-scale distances.