959 resultados para ELASTIC STOCKINGS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of an elastic quarter-plane with arbitrary loadings on the boundaries has been solved using a Fourier-integral approach.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to study the elastic behaviour of matter when subjected to very large pressures, such as occur for example in the interior of the earth, and to provide an explanation for phenomena like earthquakes, it is essential to be able to calculate the values of the elastic constants of a substance under a state of large initial stress in terms of the elastic constants of a natural or stress-free state. An attempt has been made in this paper to derive expressions for these quantities for a substance of cubic symmetry on the basis of non-linear theory of elasticity and including up to cubic powers of the strain components in the strain energy function. A simple method of deriving them directly from the energy function itself has been indicated for any general case and the same has been applied to the case of hydrostatic compression. The notion of an effective elastic energy-the energy require to effect an infinitesimal deformation over a state of finite strain-has been introduced, the coefficients in this expression being the effective elastic constants. A separation of this effective energy function into normal co-ordinates has been given for the particular case of cubic symmetry and it has been pointed out, that when any of such coefficients in this normal form becomes negative, elastic instability will set in, with associated release of energy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a new computationally efficient method for large-scale polypeptide folding using coarse-grained elastic networks and gradient-based continuous optimization techniques. The folding is governed by minimization of energy based on Miyazawa–Jernigan contact potentials. Using this method we are able to substantially reduce the computation time on ordinary desktop computers for simulation of polypeptide folding starting from a fully unfolded state. We compare our results with available native state structures from Protein Data Bank (PDB) for a few de-novo proteins and two natural proteins, Ubiquitin and Lysozyme. Based on our simulations we are able to draw the energy landscape for a small de-novo protein, Chignolin. We also use two well known protein structure prediction software, MODELLER and GROMACS to compare our results. In the end, we show how a modification of normal elastic network model can lead to higher accuracy and lower time required for simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an effective elastography technique in which an acoustic radiation force is used for remote palpation to generate localized tissue displacements, which are directly correlated to localized variations of tissue stiffness and are measured using a light probe in the same direction of ultrasound propagation. The experimental geometry has provision to input light beam along the ultrasound propagation direction, and hence it can be prealigned to ensure proper interception of the focal region by the light beam. Tissue-mimicking phantoms with homogeneous and isotropic mechanical properties of normal and malignant breast tissue are considered for the study. Each phantom is insonified by a focusing ultrasound transducer (1 MHz). The focal volume of the transducer and the ultrasound radiation force in the region are estimated through solving acoustic wave propagation through medium assuming average acoustic properties. The forward elastography problem is solved for the region of insonification assuming the Lame's parameters and Poisson's ratio, under Dirichlet boundary conditions which gives a distribution of displacement vectors. The direction of displacement, though presented spatial variation, is predominantly towards the ultrasound propagation direction. Using Monte Carlo (MC) simulation we have traced the photons through the phantom and collected the photons arriving at the detector on the boundary of the object in the direction of ultrasound. The intensity correlations are then computed from detected photons. The intensity correlation function computed through MC simulation showed a modulation whose strength is found to be proportional to the amplitude of displacement and inversely related to the storage (elastic) modulus. It is observed that when the storage modulus in the focal region is increased the computed displacement magnitude, as indicated by the depth of modulation in the intensity autocorrelation, decreased and the trend is approximately exponential.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ultrasonic velocities at 10 MHz have been measured in two series of lithium, sodium, and potassium phosphomolybdate glasses with two fixed P2O5 concentrations. Elastic moduli, Poisson's ratio, and Debye temperature have been calculated. The composition dependence of most of the properties of lithium glasses exhibits a trend opposite to that of potassium glasses. Properties of sodium glasses lie between the other two alkali systems. Alkali oxide modification is suggested to be accompanied by ring reformation in lithium and sodium glasses. Ring size effects have been shown to account for all of the composition dependence.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Under hot-forming conditions characterized by high homologous temperatures and strain-rates, metals usually exhibit rate-dependent inelastic behavior. An elastic-viscoplastic constitutive model is presented here to describe metal behavior during hot-forming. The model uses an isotropic internal variable to represent the resistance offered to plastic deformation by the microstructure. Evolution equations are developed for the inelastic strain and the deformation resistance based on experimental results. A methodology is presented for extracting model parameters from constant true strain-rate compression tests performed at different temperatures. Model parameters are determined for an Al-1Mn alloy and an Al-Mg-Si alloy, and the predictions of the model are shown to be in good agreement with the experimental data. (C) 2000 Kluwer Academic Publishers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Elastic properties of potassium and lead phosphotungstate glasses have been investigated using ultrasonic velocity measurements. The composition dependence of elastic moduli in WO3-K2O-P2O5 glasses suggests that at low alkali oxide concentrations the atomic ring size increases by network modification, which results in the decrease of elastic moduli. In the highly modified regime, due to the presence of coulombic interaction, the rate of decrease of elastic moduli is reduced. In the WO3-PbO-P2O5 glasses the behaviour of elastic moduli suggests that PbO behaves both as a network former and network modifier. The incorporation of PbO into the network is quantitatively determined by the concentration of P2O5 in the system. The results are consistent with the structural model proposed earlier, based on characterization studies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sodium p-nitrophenolate dihydrate single crystals possess excellent nonlinear optical properties such that they can be used for optical second-harmonic generation. It belongs to the orthorhombic system with the space group Ima2. Slow evaporation or slow cooling techniques can be used to grow good optical quality single crystals from supersaturated solution. All the nine elastic constants of this crystal have been measured using an ultrasonic technique. Samples for measurements have been cut along desired crystallographic axes and the pulse echo overlap technique has been used to measure longitudinal and shear ultrasonic wave velocities along appropriate symmetry directions in the crystal. The McSkimin Delta t criterion has been applied to determine the round trip travel time accurately, from which the nine elastic constants have been evaluated. Temperature variation of selected elastic constants in a limited range have also been measured and reported.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Our concern here is to rationalize experimental observations of failure modes brought about by indentation of hard thin ceramic films deposited on metallic substrates. By undertaking this exercise, we would like to evolve an analytical framework that can be used for designs of coatings. In Part I of the paper we develop an algorithm and test it for a model system. Using this analytical framework we address the issue of failure of columnar TiN films in Part II [J. Mater. Res. 21, 783 (2006)] of the paper. In this part, we used a previously derived Hankel transform procedure to derive stress and strain in a birefringent polymer film glued to a strong substrate and subjected to spherical indentation. We measure surface radial strains using strain gauges and bulk film stresses using photo elastic technique (stress freezing). For a boundary condition based on Hertzian traction with no film interface constraint and assuming the substrate constraint to be a function of the imposed strain, the theory describes the stress distributions well. The variation in peak stresses also demonstrates the usefulness of depositing even a soft film to protect an underlying substrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The influences of the amorphous matrix and crystalline dendrite phases on the hardness and elastic moduli of Zr/Ti-based bulk metallic glass matrix composites have been assessed. While the moduli of the composites correspond to those predicted by the rule of mixtures, the hardness of the composites is similar to that of the matrix, suggesting that the plastic flow in the composites under constrained conditions such as indentation is controlled by the flow resistance of the contiguous matrix. (C) 2010 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of a circular elastic inclusion in a cylindrical shell subjected to internal pressure or thermal loading is studied. The two shallow-shell equations governing the behaviour of a cylindrical shell are transformed into a single differential equation involving a curvature parameter and a complex potential function in a non-dimensional form. In the shell region, the solution is represented by Hankel functions of first kind, whereas in the inclusion region it is represented by Bessel functions of first kind. Boundary conditions at the shell-inclusion junction are expressed in a simple form involving in-plane strains and change in curvature. The effect of such inclusion parameters as extensional rigidity, bending rigidity, and thermal expansion coefficients on the stress concentrations has been determined. The results are presented in non-dimensional form for ready use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The authors report here the first measurements of low-frequency dynamic elastic properties of a spin glass (Fe59Ni21Cr20) across the transition temperature (Tg approximately=16 K). A minimum in the sound velocity (V) and a maximum in the internal friction (Q-1) were found at temperatures close to but below Tg. The elastic data were compared with the AC susceptibility data taken at similar frequency.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The advent of large and fast digital computers and development of numerical techniques suited to these have made it possible to review the analysis of important fundamental and practical problems and phenomena of engineering which have remained intractable for a long time. The understanding of the load transfer between pin and plate is one such. Inspite of continuous attack on these problems for over half a century, classical solutions have remained limited in their approach and value to the understanding of the phenomena and the generation of design data. On the other hand, the finite element methods that have grown simultaneously with the recent development of computers have been helpful in analysing specific problems and answering specific questions, but are yet to be harnessed to assist in obtaining with economy a clearer understanding of the phenomena of partial separation and contact, friction and slip, and fretting and fatigue in pin joints. Against this background, it is useful to explore the application of the classical simple differential equation methods with the aid of computer power to open up this very important area. In this paper we describe some of the recent and current work at the Indian Institute of Science in this last direction.