930 resultados para E-Serial Licenses Update
Resumo:
A generalized enthalpy update scheme is presented for evaluating solid and liquid fractions during the solidification of binary alloys, taking solid movement into consideration. A fixed-grid, enthalpy-based method is developed such that the scheme accounts for equilibrium as well as for nonequilibrium solidification phenomena, along with solid phase movement. The effect of solid movement on the solidification interface shape and macrosegregation is highlighted.
Resumo:
Many common activities, like reading, scanning scenes, or searching for an inconspicuous item in a cluttered environment, entail serial movements of the eyes that shift the gaze from one object to another. Previous studies have shown that the primate brain is capable of programming sequential saccadic eye movements in parallel. Given that the onset of saccades directed to a target are unpredictable in individual trials, what prevents a saccade during parallel programming from being executed in the direction of the second target before execution of another saccade in the direction of the first target remains unclear. Using a computational model, here we demonstrate that sequential saccades inhibit each other and share the brain's limited processing resources (capacity) so that the planning of a saccade in the direction of the first target always finishes first. In this framework, the latency of a saccade increases linearly with the fraction of capacity allocated to the other saccade in the sequence, and exponentially with the duration of capacity sharing. Our study establishes a link between the dual-task paradigm and the ramp-to-threshold model of response time to identify a physiologically viable mechanism that preserves the serial order of saccades without compromising the speed of performance.
Resumo:
This paper discusses the use of Jason-2 radar altimeter measurements to estimate the Ganga-Brahmaputra surface freshwater flux into the Bay of Bengal for the period mid-2008 to December 2011. A previous estimate was generated for 1993-2008 using TOPEX-Poseidon, ERS-2 and ENVISAT, and is now extended using Jason-2. To take full advantages of the new availability of in situ rating curves, the processing scheme is adapted and the adjustments of the methodology are discussed here. First, using a large sample of in situ river height measurements, we estimate the standard error of Jason-2-derived water levels over the Ganga and the Brahmaputra to be respectively of 0.28 m and 0.19 m, or less than similar to 4% of the annual peak-to-peak variations of these two rivers. Using the in situ rating curves between water levels and river discharges, we show that Jason-2 accurately infers Ganga and Brahmaputra instantaneous discharges for 2008-2011 with mean errors ranging from similar to 2180 m(3)/s (6.5%) over the Brahmaputra to similar to 1458 m(3)/s (13%) over the Ganga. The combined Ganga-Brahmaputra monthly discharges meet the requirements of acceptable accuracy (15-20%) with a mean error of similar to 16% for 2009-2011 and similar to 17% for 1993-2011. The Ganga-Brahmaputra monthly discharge at the river mouths is then presented, showing a marked interannual variability with a standard deviation of similar to 12500 m(3)/s, much larger than the data set uncertainty. Finally, using in situ sea surface salinity observations, we illustrate the possible impact of extreme continental freshwater discharge event on the northern Bay of Bengal as observed in 2008.
Resumo:
Nonlinear equations in mathematical physics and engineering are solved by linearizing the equations and forming various iterative procedures, then executing the numerical simulation. For strongly nonlinear problems, the solution obtained in the iterative process can diverge due to numerical instability. As a result, the application of numerical simulation for strongly nonlinear problems is limited. Helicopter aeroelasticity involves the solution of systems of nonlinear equations in a computationally expensive environment. Reliable solution methods which do not need Jacobian calculation at each iteration are needed for this problem. In this paper, a comparative study is done by incorporating different methods for solving the nonlinear equations in helicopter trim. Three different methods based on calculating the Jacobian at the initial guess are investigated. (C) 2011 Elsevier Masson SAS. All rights reserved.
Resumo:
We present an open-source, realtime, embedded implementation of a foot-mounted, zero-velocity-update-aided inertial navigation system. The implementation includes both hardware design and software, uses off-the-shelf components and assembly methods, and features a standard USB interface. The software is written in C and can easily be modified to run user implemented algorithms. The hardware design and the software are released under permissive open-source licenses and production files, source code, documentation, and further resources are available at www.openshoe.org. The reproduction cost for a single unit is below $800, with the inertial measurement unit making up the bulk ($700). The form factor of the implementation is small enough for it to be integrated in the sole of a shoe. A performance evaluation of the system shows a position errors for short trajectories (<;100 [m]) of ± 0.2-1% of the traveled distance, depending on the shape of trajectory.
Resumo:
Frequent episode discovery is a popular framework for pattern discovery from sequential data. It has found many applications in domains like alarm management in telecommunication networks, fault analysis in the manufacturing plants, predicting user behavior in web click streams and so on. In this paper, we address the discovery of serial episodes. In the episodes context, there have been multiple ways to quantify the frequency of an episode. Most of the current algorithms for episode discovery under various frequencies are apriori-based level-wise methods. These methods essentially perform a breadth-first search of the pattern space. However currently there are no depth-first based methods of pattern discovery in the frequent episode framework under many of the frequency definitions. In this paper, we try to bridge this gap. We provide new depth-first based algorithms for serial episode discovery under non-overlapped and total frequencies. Under non-overlapped frequency, we present algorithms that can take care of span constraint and gap constraint on episode occurrences. Under total frequency we present an algorithm that can handle span constraint. We provide proofs of correctness for the proposed algorithms. We demonstrate the effectiveness of the proposed algorithms by extensive simulations. We also give detailed run-time comparisons with the existing apriori-based methods and illustrate scenarios under which the proposed pattern-growth algorithms perform better than their apriori counterparts. (C) 2013 Elsevier B.V. All rights reserved.
Resumo:
A range constraint method viz. centroid method is proposed to fuse the navigation information of dual (right and left) foot-mounted Zero-velocity-UPdaTe (ZUPT)-aided Inertial Navigation Systems (INSs). Here, the range constraint means that the distance of separation between the position estimates of right and left foot ZUPT-aided INSs cannot be greater than a quantity known as foot-to-foot maximum separation. We present the experimental results which illustrate the applicability of the proposed method. The results show that the proposed method significantly enhances the accuracy of the navigation solution when compared to using two uncoupled foot-mounted ZUPT-aided INSs. Also, we compare the performance of the proposed method with the existing data fusion methods.
Resumo:
Quantum cellular automata (QCA) is a new technology in the nanometer scale and has been considered as one of the alternative to CMOS technology. In this paper, we describe the design and layout of a serial memory and parallel memory, showing the layout of individual memory cells. Assuming that we can fabricate cells which are separated by 10nm, memory capacities of over 1.6 Gbit/cm2 can be achieved. Simulations on the proposed memories were carried out using QCADesigner, a layout and simulation tool for QCA. During the design, we have tried to reduce the number of cells as well as to reduce the area which is found to be 86.16sq mm and 0.12 nm2 area with the QCA based memory cell. We have also achieved an increase in efficiency by 40%.These circuits are the building block of nano processors and provide us to understand the nano devices of the future.
Resumo:
We develop a new dictionary learning algorithm called the l(1)-K-svp, by minimizing the l(1) distortion on the data term. The proposed formulation corresponds to maximum a posteriori estimation assuming a Laplacian prior on the coefficient matrix and additive noise, and is, in general, robust to non-Gaussian noise. The l(1) distortion is minimized by employing the iteratively reweighted least-squares algorithm. The dictionary atoms and the corresponding sparse coefficients are simultaneously estimated in the dictionary update step. Experimental results show that l(1)-K-SVD results in noise-robustness, faster convergence, and higher atom recovery rate than the method of optimal directions, K-SVD, and the robust dictionary learning algorithm (RDL), in Gaussian as well as non-Gaussian noise. For a fixed value of sparsity, number of dictionary atoms, and data dimension, l(1)-K-SVD outperforms K-SVD and RDL on small training sets. We also consider the generalized l(p), 0 < p < 1, data metric to tackle heavy-tailed/impulsive noise. In an image denoising application, l(1)-K-SVD was found to result in higher peak signal-to-noise ratio (PSNR) over K-SVD for Laplacian noise. The structural similarity index increases by 0.1 for low input PSNR, which is significant and demonstrates the efficacy of the proposed method. (C) 2015 Elsevier B.V. All rights reserved.
Resumo:
Most pattern mining methods yield a large number of frequent patterns, and isolating a small relevant subset of patterns is a challenging problem of current interest. In this paper, we address this problem in the context of discovering frequent episodes from symbolic time-series data. Motivated by the Minimum Description Length principle, we formulate the problem of selecting relevant subset of patterns as one of searching for a subset of patterns that achieves best data compression. We present algorithms for discovering small sets of relevant non-redundant episodes that achieve good data compression. The algorithms employ a novel encoding scheme and use serial episodes with inter-event constraints as the patterns. We present extensive simulation studies with both synthetic and real data, comparing our method with the existing schemes such as GoKrimp and SQS. We also demonstrate the effectiveness of these algorithms on event sequences from a composable conveyor system; this system represents a new application area where use of frequent patterns for compressing the event sequence is likely to be important for decision support and control.