866 resultados para Dynamic mechanical analysis (DMA)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The copolymer of acrylonitrile (AN), methyl methacrylate (MMA) and poly(ethylene glycol) methyl ether methacrylate (PEGMEMA) is synthesized in 1-butyl-3-methylimidazolium tetrafluoroborate (BMImBF(4)). The dynamic mechanical properties of the resulting gel polymer electrolytes containing ionic liquid are measured.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this study, melt blends of poly(butylene terephthalate) (PBT) with epoxy resin were characterized by dynamic mechanical analysis, differential scanning calorimetry, tensile testing, Fourier transform infrared spectroscopy, and wide-angle X-ray diffraction. The results indicate that the presence of epoxy resin influenced either the mechanical properties of the PBT/epoxy blends or the crystallization of PBT. The epoxy resin was completely miscible with the PBT matrix. This was beneficial to the improvement of the impact performance of the PBT/epoxy blends.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) (PCL), a saturated polyester, derived from ring-opening polymerization of epsilon-caprolactone, was chemically crosslinked with various amounts of benzoyl peroxide (BPO) by a two-step method by first evenly dispersing the BPO into the PCL matrix and then crosslinking at elevated temperature. The gel fraction increased with an increase in BPO content. The modified Charlesby-Pinner equation was used to calculate the ratio of chain scission and crosslinking. The results showed that both scission and crosslinking occurred, and that crosslinking predominated over scission. The number-average molecular weight between the crosslinks determined by the rubber elasticity theory using the hot set test showed a decrease with increasing BPO content. The melting temperature and crystallinity decreased with an increase in BPO content, and the crystallization temperature increased after crosslinking. Dynamic mechanical analysis results showed a decrease in the glass transition temperature as a result of chemical crosslinking of PCL. This was explained by the observed reduction in crystallinity and the increase in free volume due to restrictions in chain packing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Poly(epsilon-caprolactone) was crosslinked by gamma radiation in the presence of triallyl isocyanurate. The influence of gamma-radiation crosslinking on the thermal and mechanical properties of poly(epsilon-caprolactone)/triallyl isocyanurate was investigated. Differential scanning calorimetry analyses showed differences between the first and second scans. Dynamic mechanical analysis showed an increase in the glass-transition temperature as a result of the radiation crosslinking of poly(epsilon-caprolactone). Thermogravimetric analysis showed that gamma-radiation crosslinking slightly improved the thermal stability of poly(epsilon-caprolactone). The 7 radiation also strongly influenced the mechanical properties. At room temperature, crosslinking by radiation did not have a significant influence on the Young's modulus and yield stress of poly(E-caprolactone). However, the tensile strength at break and the elongation at break generally decreased with an increase in the crosslinking level. When the temperature was increased above the melting point, the tensile strength at break, elongation at break, and Young's modulus of poly(epsilon-caprolactone) were also reduced with an increase in the crosslinking level. The yield stress disappeared as a result of the disappearance of the crystallites.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modification of high-impact polystyrene (HIPS) was accomplished by melt-grafting glycidyl methacrylate (GMA) on its molecular chains. Fourier transform infrared spectroscopy and electron spectroscopy for chemical analysis were used to characterize the formation of HIPS-g-GMA copolymers. The content of GMA in HIPS-g-GMA copolymer was determined by using the titration method. The effect of the concentrations of GMA and dicumyl peroxide on the degree of grafting was studied. A total of 1.9% of GMA can be grafted on HIPS. HIPS-g-GNU was used to prepare binary blends with poly(buthylene terephthalate) (PBT), and the evidence of reactions between the grafting copolymer and PBT in the blends was confirmed by scanning electron microscopy (SEM), dynamic mechanical analysis, and its mechanical properties. The SEM result showed that the domain size in PBT/HIPS-g-GMA blends was reduced significantly compared with that in PBT/HIPS blends; moreover, the improved strength was measured in PBT/HIPS-g-GMA blends and results from good interfacial adhesion. The reaction between ester groups of PBT and epoxy groups of HIPS-g-GMA can depress crystallinity and the crystal perfection of PBT.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamic mechanical properties of sulfonated butyl rubber ionomers neutralized with different amine or metallic ion (zinc or barium) and their blends with polypropylene (PP), high-density polyethylene (HDPE), or styrene-butadiene-styrene (SBS) triblock copolymer were studied using viscoelastometry. The results showed that glass transition temperatures of ion pair-containing matrix and ionic domains (T-g1 and T-g2, respectively) of amine-neutralized ionomers were lower than those of ionomers neutralized with metallic ions, and the temperature range of the rubbery plateau on the storage modulus plot for amine-neutralized ionomers was narrower. The modulus of the rubbery plateau for amine-neutralized ionomers was lower than that of ionomers neutralized with zinc or barium ion. With increasing size of the amine, the temperature range for the rubbery plateau decreased, and the height of the loss peak at higher temperature increased. Dynamic mechanical properties of blends of the zinc ionomer with PP or HDPE showed that, with decreasing ionomer content, the T-m of PP or HDPE increased and T-g1 decreased, whereas T-g2 or the upper loss peak temperature changed only slightly. The T-g1 for the blend with SBS also decreased with decreasing ionomer content. The decrease of T-g1 is attributed to the enhanced compatibilization of the matrix of the ionomer-containing ion pairs with amorphous regions of PP or HDPE or the continuous phase of SBS due to the formation of thermoplastic interpenetrating polymer networks by ionic domains and crystalline or glassy domains.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using poly(styrene-co-maleic anhydride) as a backbone and poly(ethylene glycol) methyl ether (PEGME) with different molecular weights as side chains, three comb-like polymers and their Li salt complexes were synthesized. The dynamic mechanical properties and conductivities were investigated. Results showed that the polymer electrolytes possess two glass transitions: alpha -transition and beta -transition, and the temperature dependence of the ionic conductivity shows WLF (Williams-Landel-Ferry) behavior. Based on the time-temperature equivalence principle, a master curve was constructed by selecting T-beta as reference temperature. The values of the WLF parameters (C-1 and C-2) were obtained and were found to be almost independent of the length of the PEGME side chain and the content of Li salt. By reference to T-0 = 50 degreesC. the relation between log tau (c) and c was found to be linear. The master curves are displaced progressively to higher frequencies as the molecular weight of the side chain is increased. The relation between log tau (n) and the molecular weight of the side chain is also linear. (C) 2001 Elsevier Science B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Interpenetrating polymer networks (IPNs) based on polyacrylate (poly(polyethylene glycol diacrylate), PEGDA) and epoxy(diglycidyl ether of bisphenol A, DGEBA) were prepared simultaneously Dynamic mechanical properties of the SINs (simultaneous interpenetrating networks) with various compositions were studied. Enhanced mechanical properties were found in this case. From the point of view of pre-swollen networks, all of the PEGDA/DGEBA IPNs were composed of the individual pre-swollen networks. A micro-phase segregation system was produced in the SIN. Glass transition temperatures shifted inward, which was attributed to molecular packing effects or mutual-entanglements of molecular segments among the individual pre-swollen networks. In accordance with the additivity of properties, namely the parallel model, the entanglement density between the two polymer networks reached its maximum at 50/50 PEGDA/DGEBA IPN.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effect of processing conditions on the electrical and dynamic behavior of carbon black (CB) filled ethylene/ethylacrylate copolymer (EEA) composites was investigated. The compounds were prepared by two methods, solution blending and mechanical mixing. Compared with the solution counterpart, the mechanical composites have a strong positive temperature coefficient (PTC) effect and a high dynamic elastic modulus, which results from the good dispersion state of carbon black in EEA, i.e. the strong interaction between carbon black and EEA. It can be concluded that the strong interaction between polymer and carbon black is essential for composites to have a high PTC intensity, good electrical reproducibility and high dynamic elastic modulus. Copyright (C) 1996 Published by Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The morphology and dynamic mechanical properties of blends of poly(ether imide) (PEI) and nylon 66 over the full composition range have been investigated. Torque changes during mixing were also measured. Lower torque values than those calculated by the log-additivity rule were obtained, resulting from the slip at the interface due to low interaction between the components. The particle size of the dispersed phase and morphology of the blends were examined by scanning electron microscopy. The composition of each phase was calculated. The blends of PEI and nylon 66 showed phase-separated structures with small spherical domains of 0.3 similar to 0.7 mu m. The glass transition temperatures (T(g)s) of the blends were shifted inward, compared with those of the homopolymers, which implied that the blends were partially miscible over a range of compositions. T-g1, corresponding to PEI-rich phase, was less affected by composition than T-g2, corresponding to nylon 66-rich phase. This indicated that the fraction of PEI mixed into nylon 66-rich phase increased with decreasing PEI content and that nylon 66 was rarely mixed into the PEI-rich phase. The effect of composition on the secondary relaxations was examined. Both T-beta, corresponding to the motion of amide groups in nylon 66, and T-gamma, corresponding to that of ether groups in PEI, were shifted to higher temperature, probably because of the formation of intermolecular interactions between the components.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The correlation between mechanical relaxation and ionic conductivity was investigated in a two-component epoxy network-LiClO4 electrolyte system. The network was composed of diglycidyl ether of polyethylene glycol (DGEPEG) and triglycidyl ether of glycerol (TGEG). The effects of salt concentration, molecular weight of PEG in DGEPEG and the proportion of DGEPEG (1000) in DGEPEG/TGEG ratio on the ionic conductivity and the mechanical relaxation of the system were studied. It was found that, among the three influential factors, the former reinforces the network chains, reduces the free volume fraction and thus increases the relaxation time of the segmental motion, which in turn lowers the ionic conductivity of the specimen. Conversely, the latter two increase the free volume and thus the chain flexibility, showing an opposite effect. From the iso-free-volume plot of the shift factor log at and reduced ionic conductivity, it is noted that the plot can be used to examine the temperature dependence of segmental mobility and seems to be useful to judge whether the incorporated salt has been dissociated completely. Besides, the ionic conductivity and relaxation time at constant reference temperature are linearly correlated with each other in all the three cases. This result gives an additional experimental confirmation of the coordinated motion model of the ionic hopping with the moving polymer chain segment, which is generally used to explain the ionic conduction in non-glassy amorphous polymer electrolytes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Blends of poly[3,3-bis(chloromethyl)oxetane] (Penton) with poly(vinyl acetate) were prepared. Compatibility, morphology, thermal behavior, and mechanical properties of blends with various compositions were studied using differential scanning calorimetry (DSC), dynamic mechanical measurements (DMA), tensile tests, and scanning electron microscopy (SEM). DMA study showed that the blends have two glass transition temperatures (T(g)). The T(g) of the PVAc rich phase shifts significantly to lower temperatures with increasing Penton content, suggesting that a considerable amount of Penton dissolves in the PVAc rich phase, but that the Penton rich phase contains little PVAc. The Penton/PVAc blends are partially compatible. DSC results suggest that PVAc can act as a beta-nucleator for Penton in the blend. Marked negative deviations from simple additivity were observed for the tensile strength at break over the entire composition range. The Young's modulus curve appeared to be S-shaped, implying that the blends are heterogeneous and have a two-phase structure. This was confirmed by SEM observations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Polyoxypropylene glycol (PPG) (or castor oil) and toluene diisocyanate (TDI) were mixed, and the prepolymer polyurethane (PU) (I) was formed. Vinyl-terminated polyurethane (II) was prepared from (I), and hydroxyethyl acrylate, AB crosslinked polymers (ABCPs) were synthesized from (II) and vinyl monomers such as styrene, methyl methacrylate, vinyl acetate, etc. The dynamic mechanical properties and morphology of ABCPs were measured. The ABCPs based on PPG have double glass transition temperatures (T(g)) on the sigma-vs. temperature curves. They display a two-phase morphology with plastic components forming the continous phase and PU-rich domains forming the separated phase on the electron micrographs. Irregular shapes and a highly polydisperse distribution of PU-rich domain sizes were observed. The crosslink density of ABCPs has a notable effect on the morphology and properties. The average diameter of the PU-rich domains depends on the molecular weight of prepolymer PPG. The highly crosslinked structures will produce large numbers of very small domains. ABCPs based on castor oil show a single T(g) relaxation on the dynamic mechanical spectra. The compatibility between the two components is much better in ABCPs based on castor oil than in those based on PPG, because there is a high crosslink density in the former. Comparison of the dynamic mechanical spectra of ABCP and interpenetrating networks (IPN) based on castor oil with similar crosslink density and composition imply that the two components in ABCP are compatible whereas microphase separation occurs in IPN. An improvement in the compatibility is achieved by the crosslinking between the two networks.