922 resultados para Dynamic manufacturing networks
Resumo:
Existing wireless systems are normally regulated by a fixed spectrum assignment strategy. This policy leads to an undesirable situation that some systems may only use the allocated spectrum to a limited extent while others have very serious spectrum insufficiency situation. Dynamic Spectrum Access (DSA) is emerging as a promising technology to address this issue such that the unused licensed spectrum can be opportunistically accessed by the unlicensed users. To enable DSA, the unlicensed user shall have the capability of detecting the unoccupied spectrum, controlling its spectrum access in an adaptive manner, and coexisting with other unlicensed users automatically. In this article, we propose a radio system Transmission Opportunity-based spectrum access control protocol with the aim to improve spectrum access fairness and ensure safe coexistence of multiple heterogeneous unlicensed radio systems. In the scheme, multiple radio systems will coexist and dynamically use available free spectrum without interfering with licensed users. Simulation is carried out to evaluate the performance of the proposed scheme with respect to spectrum utilisation, fairness and scalability. Comparing with the existed studies, our strategy is able to achieve higher scalability and controllability without degrading spectrum utilisation and fairness performance.
Resumo:
A dynamic bandwidth reservation (DBR) scheme for hybrid IEEE 802.16 wireless networks is investigated, in which 802.16 networks serve as the backhaul for client networks, such as WiFi hotspots and cellular networks. The DBR scheme implemented in the subscription stations (SSs) (co-locating with access pointers) consists of two components: connection admission controller (CAC), and bandwidth controller (BC). The CAC processes the received connection set-up requests from the client networks connected to the SSs. The BC manages the request and release of bandwidth from the base station (BS). It dynamically changes the reserved bandwidth between a small number of values. Hysteresis is incorporated in bandwidth release to reduce bandwidth request signalling load and connection blocking probability. An analytical model is proposed to evaluate the performances of reserved bandwidth, connection blocking probability and signalling load. The impacts of hysteresis mechanism and probability of reservation request blocking are taken into account. Simulation verifies the analytical model. ©2008 IEEE.
Resumo:
We report the impact of cascaded reconfigurable optical add-drop multiplexer induced penalties on coherently-detected 28 Gbaud polarization multiplexed m-ary quadrature amplitude modulation (PM m-ary QAM) WDM channels. We investigate the interplay between different higher-order modulation channels and the effect of filter shapes and bandwidth of (de)multiplexers on the transmission performance, in a segment of pan-European optical network with a maximum optical path of 4,560 km (80km x 57 spans). We verify that if the link capacities are assigned assuming that digital back propagation is available, 25% of the network connections fail using electronic dispersion compensation alone. However, majority of such links can indeed be restored by employing single-channel digital back-propagation employing less than 15 steps for the whole link, facilitating practical application of DBP. We report that higher-order channels are most sensitive to nonlinear fiber impairments and filtering effects, however these formats are less prone to ROADM induced penalties due to the reduced maximum number of hops. Furthermore, it has been demonstrated that a minimum filter Gaussian order of 3 and bandwidth of 35 GHz enable negligible excess penalty for any modulation order.
Resumo:
We report for the first time, the impact of cross phase modulation in WDM optical transport networks employing dynamic 28 Gbaud PM-mQAM transponders (m = 4, 16, 64, 256). We demonstrate that if the order of QAM is adjusted to maximize the capacity of a given route, there may be a significant degradation in the transmission performance of existing traffic for a given dynamic network architecture. We further report that such degradations are correlated to the accumulated peak-to-average power ratio of the added traffic along a given path, and that managing this ratio through pre-distortion reduces the impact of adjusting the constellation size of neighboring channels. (C) 2011 Optical Society of America
Resumo:
We study heterogeneity among nodes in self-organizing smart camera networks, which use strategies based on social and economic knowledge to target communication activity efficiently. We compare homogeneous configurations, when cameras use the same strategy, with heterogeneous configurations, when cameras use different strategies. Our first contribution is to establish that static heterogeneity leads to new outcomes that are more efficient than those possible with homogeneity. Next, two forms of dynamic heterogeneity are investigated: nonadaptive mixed strategies and adaptive strategies, which learn online. Our second contribution is to show that mixed strategies offer Pareto efficiency consistently comparable with the most efficient static heterogeneous configurations. Since the particular configuration required for high Pareto efficiency in a scenario will not be known in advance, our third contribution is to show how decentralized online learning can lead to more efficient outcomes than the homogeneous case. In some cases, outcomes from online learning were more efficient than all other evaluated configuration types. Our fourth contribution is to show that online learning typically leads to outcomes more evenly spread over the objective space. Our results provide insight into the relationship between static, dynamic, and adaptive heterogeneity, suggesting that all have a key role in achieving efficient self-organization.
Resumo:
This paper presents a new, dynamic feature representation method for high value parts consisting of complex and intersecting features. The method first extracts features from the CAD model of a complex part. Then the dynamic status of each feature is established between various operations to be carried out during the whole manufacturing process. Each manufacturing and verification operation can be planned and optimized using the real conditions of a feature, thus enhancing accuracy, traceability and process control. The dynamic feature representation is complementary to the design models used as underlining basis in current CAD/CAM and decision support systems. © 2012 CIRP.
Resumo:
As one of the most successfully commercialized distributed energy resources, the long-term effects of microturbines (MTs) on the distribution network has not been fully investigated due to the complex thermo-fluid-mechanical energy conversion processes. This is further complicated by the fact that the parameter and internal data of MTs are not always available to the electric utility, due to different ownerships and confidentiality concerns. To address this issue, a general modeling approach for MTs is proposed in this paper, which allows for the long-term simulation of the distribution network with multiple MTs. First, the feasibility of deriving a simplified MT model for long-term dynamic analysis of the distribution network is discussed, based on the physical understanding of dynamic processes that occurred within MTs. Then a three-stage identification method is developed in order to obtain a piecewise MT model and predict electro-mechanical system behaviors with saturation. Next, assisted with the electric power flow calculation tool, a fast simulation methodology is proposed to evaluate the long-term impact of multiple MTs on the distribution network. Finally, the model is verified by using Capstone C30 microturbine experiments, and further applied to the dynamic simulation of a modified IEEE 37-node test feeder with promising results.
Resumo:
SCOPUS: ed.j
Resumo:
A rapidly changing business environment has necessitated most small and medium sized enterprises with international ambitions to reconsider their sources of competitive advantage. To survive in the face of a changing business environment, firms should utilize their dynamic organizational capabilities as well as their internationalization capabilities. Firms develop a competitive advantage if they can exploit their unique organizational competences in a new or foreign market and also if they can acquire new capabilities as a result of engaging in foreign markets. The acquired capabilities from foreign locations enhance the existing capability portfolio of a firm with a desire to internationalize. The study combined the research streams of SME organizational dynamic capability and internationalization capability to build a complete picture on the existing knowledge. An intensive case study was used for empirically testing the theoretical framework of the study and compared with the literature on various organizational capability factors and internationalization capabilities. Sormay Oy was selected because it is a successful medium sized company operating in Finland in the manufacturing industry which has a high international profile. In addition, it has sufficient rate of growth in sales that warrants it to engage internationally in matters such as, acquisitions, joint ventures and partnerships. The key findings of the study suggests that, medium sized manufacturing firms have a set of core competences arising from their organizational capabilities which were identified to be employee know how and relationship with stakeholders which aid the firm in its quest for attaining competitive advantage, ensuring production flexibility and gaining benefits present in a network. In addition, internationalization capabilities were identified under both the RAT test and CAT test whereby the primary findings suggests that, firms that outperform their competitors produce products that meet specific customer and country requirements, foresee the pitfalls of imitation brought about by the foreign local companies and members of a particular network through joint ventures, acquisitions or partnerships as well as those firms that are capable to acquire new capabilities in the foreign markets and successfully use these acquired capabilities to enhance or renew their capability portfolio for their competitive advantage. Additional significant findings under internationalization capabilities were discovered whereby, Sormay Oy was able to develop a new market space for its products despite the difficult institutional environment present in Russia.
Resumo:
Deployment of low power basestations within cellular networks can potentially increase both capacity and coverage. However, such deployments require efficient resource allocation schemes for managing interference from the low power and macro basestations that are located within each other’s transmission range. In this dissertation, we propose novel and efficient dynamic resource allocation algorithms in the frequency, time and space domains. We show that the proposed algorithms perform better than the current state-of-art resource management algorithms. In the first part of the dissertation, we propose an interference management solution in the frequency domain. We introduce a distributed frequency allocation scheme that shares frequencies between macro and low power pico basestations, and guarantees a minimum average throughput to users. The scheme seeks to minimize the total number of frequencies needed to honor the minimum throughput requirements. We evaluate our scheme using detailed simulations and show that it performs on par with the centralized optimum allocation. Moreover, our proposed scheme outperforms a static frequency reuse scheme and the centralized optimal partitioning between the macro and picos. In the second part of the dissertation, we propose a time domain solution to the interference problem. We consider the problem of maximizing the alpha-fairness utility over heterogeneous wireless networks (HetNets) by jointly optimizing user association, wherein each user is associated to any one transmission point (TP) in the network, and activation fractions of all TPs. Activation fraction of a TP is the fraction of the frame duration for which it is active, and together these fractions influence the interference seen in the network. To address this joint optimization problem which we show is NP-hard, we propose an alternating optimization based approach wherein the activation fractions and the user association are optimized in an alternating manner. The subproblem of determining the optimal activation fractions is solved using a provably convergent auxiliary function method. On the other hand, the subproblem of determining the user association is solved via a simple combinatorial algorithm. Meaningful performance guarantees are derived in either case. Simulation results over a practical HetNet topology reveal the superior performance of the proposed algorithms and underscore the significant benefits of the joint optimization. In the final part of the dissertation, we propose a space domain solution to the interference problem. We consider the problem of maximizing system utility by optimizing over the set of user and TP pairs in each subframe, where each user can be served by multiple TPs. To address this optimization problem which is NP-hard, we propose a solution scheme based on difference of submodular function optimization approach. We evaluate our scheme using detailed simulations and show that it performs on par with a much more computationally demanding difference of convex function optimization scheme. Moreover, the proposed scheme performs within a reasonable percentage of the optimal solution. We further demonstrate the advantage of the proposed scheme by studying its performance with variation in different network topology parameters.
Resumo:
To analyze the characteristics and predict the dynamic behaviors of complex systems over time, comprehensive research to enable the development of systems that can intelligently adapt to the evolving conditions and infer new knowledge with algorithms that are not predesigned is crucially needed. This dissertation research studies the integration of the techniques and methodologies resulted from the fields of pattern recognition, intelligent agents, artificial immune systems, and distributed computing platforms, to create technologies that can more accurately describe and control the dynamics of real-world complex systems. The need for such technologies is emerging in manufacturing, transportation, hazard mitigation, weather and climate prediction, homeland security, and emergency response. Motivated by the ability of mobile agents to dynamically incorporate additional computational and control algorithms into executing applications, mobile agent technology is employed in this research for the adaptive sensing and monitoring in a wireless sensor network. Mobile agents are software components that can travel from one computing platform to another in a network and carry programs and data states that are needed for performing the assigned tasks. To support the generation, migration, communication, and management of mobile monitoring agents, an embeddable mobile agent system (Mobile-C) is integrated with sensor nodes. Mobile monitoring agents visit distributed sensor nodes, read real-time sensor data, and perform anomaly detection using the equipped pattern recognition algorithms. The optimal control of agents is achieved by mimicking the adaptive immune response and the application of multi-objective optimization algorithms. The mobile agent approach provides potential to reduce the communication load and energy consumption in monitoring networks. The major research work of this dissertation project includes: (1) studying effective feature extraction methods for time series measurement data; (2) investigating the impact of the feature extraction methods and dissimilarity measures on the performance of pattern recognition; (3) researching the effects of environmental factors on the performance of pattern recognition; (4) integrating an embeddable mobile agent system with wireless sensor nodes; (5) optimizing agent generation and distribution using artificial immune system concept and multi-objective algorithms; (6) applying mobile agent technology and pattern recognition algorithms for adaptive structural health monitoring and driving cycle pattern recognition; (7) developing a web-based monitoring network to enable the visualization and analysis of real-time sensor data remotely. Techniques and algorithms developed in this dissertation project will contribute to research advances in networked distributed systems operating under changing environments.
Resumo:
In this article the authors use two EERA networks as a case for a discussion on the development of research networks within the European Educational Research Association (EERA). They contend that EERA networks through their way of working create a European research space. As their case shows, the development of networks is diverse. The emergence of networks and the current group of thirty-one networks do not display a coherent and unified system. Thus they argue that EERA networks have to be studied as an open complex system in order to comprehend the multiplicity and creative and innovative space that these networks represent. They create a space for knowledge production in a European context, enabling educational researchers to see and experience their research in a more diverse setting.
Resumo:
The experimental projects discussed in this thesis are all related to the field of artificial molecular machines, specifically to systems composed of pseudorotaxane and rotaxane architectures. The characterization of the peculiar properties of these mechano-molecules is frequently associated with the analysis and elucidation of complex reaction networks; this latter aspect represents the main focus and central thread tying my thesis work. In each chapter, a specific project is described as summarized below: the focus of the first chapter is the realization and characterization of a prototype model of a photoactivated molecular transporter based on a pseudorotaxane architecture; in the second chapter is reported the design, synthesis, and characterization of a [2]rotaxane endowed with a dibenzylammonium station and a novel photochromic unit that acts as a recognition site for a DB24C8 crown ether macrocycle; in the last chapter is described the synthesis and characterization of a [3]rotaxane in which the relative number of rings and stations can be changed on command.
Resumo:
This paper presents a rational approach to the design of a catamaran's hydrofoil applied within a modern context of multidisciplinary optimization. The approach used includes the use of response surfaces represented by neural networks and a distributed programming environment that increases the optimization speed. A rational approach to the problem simplifies the complex optimization model; when combined with the distributed dynamic training used for the response surfaces, this model increases the efficiency of the process. The results achieved using this approach have justified this publication.