547 resultados para Dung Beetle
Resumo:
The evolutionary origin of beetle bioluminescence is enigmatic. Previously, weak luciferase activity was found in the non-bioluminescent larvae of Tenebrio molitor (Coleoptera: Tenebrionidae), but the detailed tissular origin and identity of the luciferase-like enzyme remained unknown. Using a closely related giant mealworm, Zophobas morio, here we show that the luciferase-like enzyme is located in the Malpighi tubules. cDNA cloning of this luciferase like enzyme, showed that it is a short AMP-ligase with weak luciferase activity which diverged long ago from beetle luciferases. The results indicate that the potential for bioluminescence in AMP-ligases is very ancient and provide a first reasonable protoluciferase model to investigate the origin and evolution of beetle luciferases.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
We report the identification of a potential pheromone for Gnathotrichus materiarius (Fitch) (Col., Scolytidae). The population sex ratio is close to 1:1, and males initiate attacks on host trees. Headspace and hindgut samples from single males showed the presence of the putative pheromone 6-methyl-5-hepten-2-ol, sulcatol. Unmated males released sulcatol for at least 12 days, and ceased producing the pheromone after 20 days. The peak sulcatol release occurred after 2 days. Males cease production of sulcatol 24 h after being paired with females. Single females were unable to initiate galleries, and no sulcatol was detected from their headspace and hindgut samples. The chiral ratio of the pheromone, observed from headspace samples, was 31% (S)-(+)- and 69% (R)-(-)-sulcatol.
THE CHROMOSOMES OF A PRIMITIVE SPECIES OF BEETLE - YTU-ZEUS (COLEOPTERA, MYXOPHAGA, TORRIDINCOLIDAE)
Resumo:
The Coleoptera order is the richest group among Metazoa, but its phylogenetics remains incompletely understood. Among Coleoptera, bioluminescence is found within the Elateroidea, but the evolution of this character remains a mystery. Mitochondrial DNA has been used extensively to reconstruct phylogenetic relationships, however, the evolution of a single gene does not always correspond to the species evolutionary history and the molecular marker choice is a key step in this type of analysis. To create a solid basis to better understand the evolutionary history of Coleoptera and its bioluminescence, we sequenced and comparatively analyzed the mitochondrial genome of the Brazilian luminescent click beetle Pyrophorus divergens (Coleoptera: Elateridae). © 2007 Elsevier B.V. All rights reserved.
Resumo:
Beetle luciferases emit a wide range of bioluminescence colors, ranging from green to red. Firefly luciferases can shift the spectrum to red in response to pH and temperature changes, whereas click beetle and railroadworm luciferases do not. Despite many studies on firefly luciferases, the origin of pH-sensitivity is far from being understood. Through comparative site-directed mutagenesis and modeling studies, using the pH-sensitive luciferases (Macrolampis and Cratomorphus distinctus fireflies) and the pH-insensitive luciferases (Pyrearinus termitilluminans, Phrixotrix viviani and Phrixotrix hirtus) cloned by our group, here we show that substitutions dramatically affecting bioluminescence colors in both groups of luciferases are clustered in the loop between residues 223-235 (Photinus pyralis sequence). The substitutions at positions 227, 228 and 229 (P. pyralis sequence) cause dramatic redshift and temporal shift in both groups of luciferases, indicating their involvement in labile interactions. Modeling studies showed that the residues Y227 and N229 are buried in the protein core, fixing the loop to other structural elements participating at the bottom of the luciferin binding site. Changes in pH and temperature (in firefly luciferases), as well as point mutations in this loop, may disrupt the interactions of these structural elements exposing the active site and modulating bioluminescence colors. © 2007 The Authors.
Resumo:
Several beetle luciferases have been cloned and sequenced. However, most studies on structure and function relationships and bioanalytical applications were done with firefly luciferases, which are pH sensitive. Several years ago we cloned Pyrearinus termitilluminans larval click beetle luciferase, which displays the most blue-shifted bioluminescence among beetle luciferases and is pH insensitive. This enzyme was expressed in E. coli, purified, and its properties investigated. This luciferase shows slower luminescence kinetics, KM values comparable to other beetle luciferases and high catalytic constant. Fluorescence studies with 8-anilino-1-naphtalene-sulfonic acid (1,8-ANS) and modeling studies suggest that the luciferin binding site of this luciferase is very hydrophobic, supporting the solvent and orientation polarizability effects as determining mechanisms for bioluminescence colors. Although pH insensitive in the range between pH 6-8, at pH 10 this luciferase displays a remarkable red-shift and broadening of the bioluminescence spectrum. Modeling studies suggest that the residue C312 may play an important role in bioluminescence color modulation. Compared to other beetle luciferases, Pyrearinus termitilluminans luciferase also displays higher thermostability and sustained luminescence in a bacterial cell environment, which makes this luciferase particularly suitable for in vivo cell analysis and bioimaging. © The Royal Society of Chemistry and Owner Societies 2009.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Protocylindrocorpus brasiliensis n. sp. (Diplogastroidea: Cylindrocorporidae) is described from reproductive stages removed from galleries of the ambrosia beetle, Euplatypus parallelus (F.) (Curculionidae: Platypodinae) in Para rubber trees (Hevea brasiliensis) in Brazil. This is the first record of the genus Protocylindrocorpus from the Neotropics. Males of P. brasiliensis are quite striking because their long spicules extend up to 72% of their total body length. The adults exhibit conspecific agglutination where they congregate in a slimy substance that serves to maintain them in a coherent group for mating. Some of the adults were infected by fungal and protozoan pathogens, implying that disease plays a role in regulating natural populations. The discovery of P. brasiliensis provides new information on nematode structure, behavior, and ecology.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The flight periodicity of western balsam bark beetle (Dryocoetes confusus Swaine) in Big Cottonwood Canyon, Utah, was studied during the summer months of 1992, 1993, and 1994. Contents of baited funnel traps were tallied by species up to 3 times weekly. Two main periods of flight activity were observed each year. The first and, generally, largest occurred in early summer soon after flight was initiated for the season. A 2nd period was observed in late summer, generally August. Timing of the 2 periods was influenced by unusually warm or cool weather in each study year. The 1st period had more males than females while the 2nd period had a majority of females. Except during periods of cool or wet weather, western balsam bark beetles were found to be active at least at minimal levels from June through September.
Resumo:
Electrophysiological responses based on electroantennographic detection (GC-EAD) and electroantennography (EAG) analysis of Naupactus bipes beetles (Germar, 1824) (Coleoptera: Curculionidae: Brachycerinae) were used to test volatile oils of Piper gaudichaudianum, P. regnellii and P. hispidum. In the EAG experiments, female and male beetles showed significant EAG response to the three volatile oils of Piper species, with the females' responses slightly higher than the males'. The experiments with GC-EAD revealed that some terpenoids (namely, alpha-pinene, beta-pinene, myrcene, alpha-copaene and germacrene) present in the leaf essential oils of the Piper species are perceptible to female and male beetles.