985 resultados para Drugs - Design


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Nanoparticles offer an ideal platform for the delivery of small molecule drugs, subunit vaccines and genetic constructs. Besides the necessity of a homogenous size distribution, defined loading efficiencies and reasonable production and development costs, one of the major bottlenecks in translating nanoparticles into clinical application is the need for rapid, robust and reproducible development techniques. Within this thesis, microfluidic methods were investigated for the manufacturing, drug or protein loading and purification of pharmaceutically relevant nanoparticles. Initially, methods to prepare small liposomes were evaluated and compared to a microfluidics-directed nanoprecipitation method. To support the implementation of statistical process control, design of experiment models aided the process robustness and validation for the methods investigated and gave an initial overview of the size ranges obtainable in each method whilst evaluating advantages and disadvantages of each method. The lab-on-a-chip system resulted in a high-throughput vesicle manufacturing, enabling a rapid process and a high degree of process control. To further investigate this method, cationic low transition temperature lipids, cationic bola-amphiphiles with delocalized charge centers, neutral lipids and polymers were used in the microfluidics-directed nanoprecipitation method to formulate vesicles. Whereas the total flow rate (TFR) and the ratio of solvent to aqueous stream (flow rate ratio, FRR) was shown to be influential for controlling the vesicle size in high transition temperature lipids, the factor FRR was found the most influential factor controlling the size of vesicles consisting of low transition temperature lipids and polymer-based nanoparticles. The biological activity of the resulting constructs was confirmed by an invitro transfection of pDNA constructs using cationic nanoprecipitated vesicles. Design of experiments and multivariate data analysis revealed the mathematical relationship and significance of the factors TFR and FRR in the microfluidics process to the liposome size, polydispersity and transfection efficiency. Multivariate tools were used to cluster and predict specific in-vivo immune responses dependent on key liposome adjuvant characteristics upon delivery a tuberculosis antigen in a vaccine candidate. The addition of a low solubility model drug (propofol) in the nanoprecipitation method resulted in a significantly higher solubilisation of the drug within the liposomal bilayer, compared to the control method. The microfluidics method underwent scale-up work by increasing the channel diameter and parallelisation of the mixers in a planar way, resulting in an overall 40-fold increase in throughput. Furthermore, microfluidic tools were developed based on a microfluidics-directed tangential flow filtration, which allowed for a continuous manufacturing, purification and concentration of liposomal drug products.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, over 15,000 Ion Mobility Spectrometry (IMS) analyzers are employed at worldwide security checkpoints to detect explosives and illicit drugs. Current portal IMS instruments and other electronic nose technologies detect explosives and drugs by analyzing samples containing the headspace air and loose particles residing on a surface. Canines can outperform these systems at sampling and detecting the low vapor pressure explosives and drugs, such as RDX, PETN, cocaine, and MDMA, because these biological detectors target the volatile signature compounds available in the headspace rather than the non-volatile parent compounds of explosives and drugs.^ In this dissertation research volatile signature compounds available in the headspace over explosive and drug samples were detected using SPME as a headspace sampling tool coupled to an IMS analyzer. A Genetic Algorithm (GA) technique was developed to optimize the operating conditions of a commercial IMS (GE Itemizer 2), leading to the successful detection of plastic explosives (Detasheet, Semtex H, and C-4) and illicit drugs (cocaine, MDMA, and marijuana). Short sampling times (between 10 sec to 5 min) were adequate to extract and preconcentrate sufficient analytes (> 20 ng) representing the volatile signatures in the headspace of a 15 mL glass vial or a quart-sized can containing ≤ 1 g of the bulk explosive or drug.^ Furthermore, a research grade IMS with flexibility for changing operating conditions and physical configurations was designed and fabricated to accommodate future research into different analytes or physical configurations. The design and construction of the FIU-IMS were facilitated by computer modeling and simulation of ion’s behavior within an IMS. The simulation method developed uses SIMION/SDS and was evaluated with experimental data collected using a commercial IMS (PCP Phemto Chem 110). The FIU-IMS instrument has comparable performance to the GE Itemizer 2 (average resolving power of 14, resolution of 3 between two drugs and two explosives, and LODs range from 0.7 to 9 ng). ^ The results from this dissertation further advance the concept of targeting volatile components to presumptively detect the presence of concealed bulk explosives and drugs by SPME-IMS, and the new FIU-IMS provides a flexible platform for future IMS research projects.^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the 1980s, government agencies sought to utilize research on drug use prevention to design media campaigns. Enlisting the assistance of the national media, several campaigns were designed and initiated to bring anti-drug use messages to adolescents in the form of public service advertising. This research explores the sources of information selected by adolescents in grades 7 through 12 and how the selection of media and other sources of information relate to drug use behavior and attitudes and perceptions related to risk/harm and disapproval of friends' drug-using activities.^ Data collected from 1989 to 1992 in the Miami Coalition School Survey provided a random selection of secondary school studies. The responses of these students were analyzed using multivariate statistical techniques.^ Although many of the students selected media as the source for most of their information on the effects of drugs on the people who use them, the selection of media was found to be positively related to alcohol use and negatively related to marijuana use. The selection of friends, brothers, or sisters was a statistically significant source for adolescents who smoke cigarettes, use alcohol or marijuana.^ The results indicate that the anti-drug use messages received by students may be canceled out by media messages perceived to advocate substance use and that a more persuasive source of information for adolescents may be friends and siblings. As federal reports suggest that the economic costs of drug abuse will reach an estimated $150 billion by 1997 if current trends continue, prevention policy that addresses the glamorization of substance use remains a national priority. Additionally, programs that advocate prevention within the peer cluster must be supported, as peers are an influential source for both inspiring and possibly preventing drug use behavior. ^

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Today, over 15,000 Ion Mobility Spectrometry (IMS) analyzers are employed at worldwide security checkpoints to detect explosives and illicit drugs. Current portal IMS instruments and other electronic nose technologies detect explosives and drugs by analyzing samples containing the headspace air and loose particles residing on a surface. Canines can outperform these systems at sampling and detecting the low vapor pressure explosives and drugs, such as RDX, PETN, cocaine, and MDMA, because these biological detectors target the volatile signature compounds available in the headspace rather than the non-volatile parent compounds of explosives and drugs. In this dissertation research volatile signature compounds available in the headspace over explosive and drug samples were detected using SPME as a headspace sampling tool coupled to an IMS analyzer. A Genetic Algorithm (GA) technique was developed to optimize the operating conditions of a commercial IMS (GE Itemizer 2), leading to the successful detection of plastic explosives (Detasheet, Semtex H, and C-4) and illicit drugs (cocaine, MDMA, and marijuana). Short sampling times (between 10 sec to 5 min) were adequate to extract and preconcentrate sufficient analytes (> 20 ng) representing the volatile signatures in the headspace of a 15 mL glass vial or a quart-sized can containing ≤ 1 g of the bulk explosive or drug. Furthermore, a research grade IMS with flexibility for changing operating conditions and physical configurations was designed and fabricated to accommodate future research into different analytes or physical configurations. The design and construction of the FIU-IMS were facilitated by computer modeling and simulation of ion’s behavior within an IMS. The simulation method developed uses SIMION/SDS and was evaluated with experimental data collected using a commercial IMS (PCP Phemto Chem 110). The FIU-IMS instrument has comparable performance to the GE Itemizer 2 (average resolving power of 14, resolution of 3 between two drugs and two explosives, and LODs range from 0.7 to 9 ng). The results from this dissertation further advance the concept of targeting volatile components to presumptively detect the presence of concealed bulk explosives and drugs by SPME-IMS, and the new FIU-IMS provides a flexible platform for future IMS research projects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Objective: To assess the effects of selective cyclo-oxygenase-2 (COX 2) inhibitors and traditional non-steroidal anti-inflammatory drugs (NSAIDs) on the risk of vascular events. Design: Meta-analysis of published and unpublished tabular data from randomised trials, with indirect estimation of the effects of traditional NSAIDs. Data sources: Medline and Embase (January 1966 to April 2005); Food and Drug Administration records; and data on file from Novartis, Pfizer, and Merck. Review methods: Eligible studies were randomised trials that included a comparison of a selective COX 2 inhibitor versus placebo or a selective COX 2 inhibitor versus a traditional NSAID, of at least four weeks' duration, with information on serious vascular events (defined as myocardial infarction, stroke, or vascular death). Individual investigators and manufacturers provided information on the number of patients randomised, numbers of vascular events, and the person time of follow-up for each randomised group. Results: In placebo comparisons, allocation to a selective COX 2 inhibitor was associated with a 42% relative increase in the incidence of serious vascular events (1.2%/year v 0.9%/year; rate ratio 1.42, 95% confidence interval 1.13 to 1.78; P = 0.003), with no significant heterogeneity among the different selective COX 2 inhibitors. This was chiefly attributable to an increased risk of myocardial infarction (0.6%/year v 0.3%/year; 1.86, 1.33 to 2.59; P = 0.0003), with little apparent difference in other vascular outcomes. Among trials of at least one year's duration (mean 2.7 years), the rate ratio for vascular events was 1.45 (1.12 to 1.89; P = 0.005). Overall, the incidence of serious vascular events was similar between a selective COX 2 inhibitor and any traditional NSAID (1.0%/year v 0.9/%year; 1.16, 0.97 to 1.38; P = 0.1). However, statistical heterogeneity (P = 0.001) was found between trials of a selective COX 2 inhibitor versus naproxen (1.57, 1.21 to 2.03) and of a selective COX 2 inhibitor versus non-naproxen NSAIDs (0.88, 0.69 to 1.12). The summary rate ratio for vascular events, compared with placebo, was 0.92 (0.67 to 1.26) for naproxen, 1.51 (0.96 to 2.37) for ibuprofen, and 1.63 (1.12 to 2.37) for diclofenac. Conclusions: Selective COX 2 inhibitors are associated with a moderate increase in the risk of vascular events, as are high dose regimens of ibuprofen and diclofenac, but high dose naproxen is not associated with such an excess.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transition metals such as iron and copper are valued in biology for their redox activities because they are able to access various oxidation states. However, these transition metals are also implicated in a number of human disease states and play a role in bacterial infections. The ability to manipulate and monitor metal ions has vast implications on the fields of biology and human health. As such, the research described here covers two related goals: to manipulate metals in specific biological circumstances and to visualize this disturbance in cellular metal homeostasis.

Antibiotic resistance necessitates the development of drugs that exploit new mechanisms of action such as the disruption of metal homeostasis. In order to manipulate metals at the site of bacterial infection, two prochelators were developed around a β-lactam core such that the active chelator is released in the presence of bacteria that produce the resistance-causing β-lactamase enzyme. Both prochelators display enhanced activity toward resistant bacteria compared to clinical antibiotics.

Fluorescent sensors are a powerful tool for detecting small concentrations of biological analytes. Two analogs of a ratiometric fluorescent sensor were designed and synthesized to monitor cellular concentrations of copper and iron. These sensors were found to operate as designed in vitro; however the fluorescence intensity necessary for quantification of cellular metal pools has not yet been achieved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design and application of effective drug carriers is a fundamental concern in the delivery of therapeutics for the treatment of cancer and other vexing health problems. Traditionally utilized chemotherapeutics are limited in efficacy due to poor bioavailability as a result of their size and solubility as well as significant deleterious effects to healthy tissue through their inability to preferentially target pathological cells and tissues, especially in treatment of cancer. Thus, a major effort in the development of nanoscopic drug delivery vehicles for cancer treatment has focused on exploiting the inherent differences in tumor physiology and limiting the exposure of drugs to non-tumorous tissue, which is commonly achieved by encapsulation of chemotherapeutics within macromolecular or supramolecular carriers that incorporate targeting ligands and that enable controlled release. The overall aim of this work is to engineer a hybrid nanomaterial system comprised of protein and silica and to characterize its potential as an encapsulating drug carrier. The synthesis of silica, an attractive nanomaterial component because it is both biocompatible as well as structurally and chemically stable, within this system is catalyzed by self-assembled elastin-like polypeptide (ELP) micelles that incorporate of a class of biologically-inspired, silica-promoting peptides, silaffins. Furthermore, this methodology produces near-monodisperse, hybrid inorganic/micellar materials under mild reaction conditions such as temperature, pH and solvent. This work studies this material system along three avenues: 1) proof-of-concept silicification (i.e. the formation and deposition of silica upon organic materials) of ELP micellar templates, 2) encapsulation and pH-triggered release of small, hydrophobic chemotherapeutics, and 3) selective silicification of templates to potentiate retention of peptide targeting ability.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Targeted cancer therapy aims to disrupt aberrant cellular signalling pathways. Biomarkers are surrogates of pathway state, but there is limited success in translating candidate biomarkers to clinical practice due to the intrinsic complexity of pathway networks. Systems biology approaches afford better understanding of complex, dynamical interactions in signalling pathways targeted by anticancer drugs. However, adoption of dynamical modelling by clinicians and biologists is impeded by model inaccessibility. Drawing on computer games technology, we present a novel visualisation toolkit, SiViT, that converts systems biology models of cancer cell signalling into interactive simulations that can be used without specialist computational expertise. SiViT allows clinicians and biologists to directly introduce for example loss of function mutations and specific inhibitors. SiViT animates the effects of these introductions on pathway dynamics, suggesting further experiments and assessing candidate biomarker effectiveness. In a systems biology model of Her2 signalling we experimentally validated predictions using SiViT, revealing the dynamics of biomarkers of drug resistance and highlighting the role of pathway crosstalk. No model is ever complete: the iteration of real data and simulation facilitates continued evolution of more accurate, useful models. SiViT will make accessible libraries of models to support preclinical research, combinatorial strategy design and biomarker discovery.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background and Objectives: Schizophrenia is a severe chronic disease. Endpoint variables lack objectivity and the diagnostic criteria have evolved with time. In order to guide the development of new drugs, European Medicines Agency (EMA) issued a guideline on the clinical investigation of medicinal products for the treatment of schizophrenia. Methods: Authors reviewed and discussed the efficacy trial part of the Guideline. Results: The Guideline divides clinical efficacy trials into short-term trials and long-term trials. The short-term three-arm trial is recommended to replace the short-term two-arm active-controlled non-inferiority trial because the latter has sensitivity issues. The Guideline ultimately makes that three-arm trial a superiority trial. The Guideline discusses four types of long-term trial designs. The randomized withdrawal trial design has some disadvantages. Long-term two-arm active-controlled non-inferiority trial is not recommended due to the sensitivity issue. Extension of the short-term trial is only suitable for extension of the short-term two-arm active-controlled superiority trial. The Guideline suggests that a hybrid design of a randomized withdrawal trial incorporated into a long-term parallel trial might be optimal. However, such a design has some disadvantages and might be too complex to be carried out. Authors suggest instead a three-group long-term trial design, which could provide comparison between test drug and active comparator along with comparison between the test drug and placebo. This alternative could arguably be much easier to carry out compared with the hybrid design. Conclusions: The three-group long-term design merits further discussion and evaluation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The flow rates of drying and nebulizing gas, heat block and desolvation line temperatures and interface voltage are potential electrospray ionization parameters as they may enhance sensitivity of the mass spectrometer. The conditions that give higher sensitivity of 13 pharmaceuticals were explored. First, Plackett-Burman design was implemented to screen significant factors, and it was concluded that interface voltage and nebulizing gas flow were the only factors that influence the intensity signal for all pharmaceuticals. This fractionated factorial design was projected to set a full 2(2) factorial design with center points. The lack-of-fit test proved to be significant. Then, a central composite face-centered design was conducted. Finally, a stepwise multiple linear regression and subsequently an optimization problem solving were carried out. Two main drug clusters were found concerning the signal intensities of all runs of the augmented factorial design. p-Aminophenol, salicylic acid, and nimesulide constitute one cluster as a result of showing much higher sensitivity than the remaining drugs. The other cluster is more homogeneous with some sub-clusters comprising one pharmaceutical and its respective metabolite. It was observed that instrumental signal increased when both significant factors increased with maximum signal occurring when both codified factors are set at level +1. It was also found that, for most of the pharmaceuticals, interface voltage influences the intensity of the instrument more than the nebulizing gas flowrate. The only exceptions refer to nimesulide where the relative importance of the factors is reversed and still salicylic acid where both factors equally influence the instrumental signal. Graphical Abstract ᅟ.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tese de Doutoramento, Química, Especialização em Química Orgânica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2016

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: To determine how well the current Pharmaceutical Benefits Scheme (PBS) eligibility criteria for subsidy of lipid-lowering drugs compare with current national guidelines for determining the population at high risk of developing cardiovascular disease (CVD). DESIGN AND PARTICIPANTS: Analyses of the population-based, cross-sectional Australian Diabetes, Obesity and Lifestyle (AusDiab) study, conducted in 1999-2000. The 1991 Framingham risk prediction equation was used to compute 5-year risk of developing first-time CVD in 8286 participants aged 30-74 years with neither CVD nor diabetes. Based on the National Heart Foundation of Australia and Cardiac Society of Australia and New Zealand guidelines, people with either 5-year CVD risk > or = 15% or with 5-year CVD risk of 10%-< 15% and the metabolic syndrome were defined as having estimated high absolute CVD risk. MAIN OUTCOME MEASURES: 5-year CVD risk; estimated population with high CVD risk. RESULTS: Among participants without prevalent CVD or diabetes, 7.9% of men and 1.5% of women had a 5-year CVD risk > or = 15%. Of the estimated residential Australian population in 2000 aged 30-74 years without CVD or diabetes, 717 000 people were considered to be at high absolute CVD risk. Among the high-risk AusDiab participants without CVD or diabetes, only 16.9% of men and 15.4% of women were being treated with lipid-lowering drugs. Of the 9.6% of participants free of CVD and diabetes who were untreated but eligible for subsidy under PBS criteria, only 27.4% had an estimated high absolute CVD risk. CONCLUSION: Strategies for CVD prevention using lipid-lowering medications can be improved by adoption of the absolute-risk approach.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mesoporous silica nanoparticles (MSNs) are exceptionally promising drug carriers for controlled drug delivery systems because their morphology, pore structure, pore volume and pore size can be well tailored to obtain certain drug release profiles. Moreover, they possess the ability to specifically transport and deliver anti-cancer drugs when targeting molecules are properly grafted onto their surface. MSNs based drug delivery systems have the potential to revolutionize cancer therapy. This review provides a comprehensive overview of the fabrication, modification of MSNs and their applications in tumour-targeted delivery. In addition, the characterization and analysis of MSNs with computer aided strategies were described. The existing issues and future prospective concerning the applications of MSNs as drug carriers for controlled drug delivery systems were discussed.