902 resultados para Drug-design


Relevância:

60.00% 60.00%

Publicador:

Resumo:

The startling increase in the occurrence of rifampicin (Rif) resistance in the clinical isolates of Mycobacterium tuberculosis worldwide is posing a serious concern to tuberculosis management. The majority of Rif resistance in bacteria arises from mutations in the RpoB subunit of the RNA polymerase. We isolated M. smegmatis strains harbouring either an insertion (6 aa) or a deletion (10 aa) in their RpoB proteins. Although these strains showed a compromised fitness for growth in 7H9 Middlebrook medium, their resistance to Rif was remarkably high. The attenuated growth of the strains correlated with decreased specific activities of the RNA polymerases from the mutants. While the RNA polymerases from the parent or a mutant strain (harbouring a frequently occurring mutation, H442Y, in RpoB) were susceptible to Rif-mediated inhibition of transcription from calf thymus DNA, those from the insertion and deletion mutants were essentially refractory to such inhibition. Three-dimensional structure modelling revealed that the RpoB amino acids that interact with Rif are either deleted or unable to interact with Rif due to their unsuitable spatial positioning in these mutants. We discuss possible uses of the RpoB mutants in studying transcriptional regulation in mycobacteria and as potential targets for drug design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

To explore the anticancer effect associated with the piperidine framework, several (substituted phenyl) {4-[3-(piperidin-4-yl)propyl]piperidin-1-yl} methanone derivatives 3(a-i) were synthesized. Variation in the functional group at N-terminal of the piperidine led to a set of compounds bearing amide moiety. Their chemical structures were confirmed by (1)H NMR, IR and mass spectra analysis. Among these, compounds 3a, 3d and 3e were endowed with antiproliferative activity. The most active compound among this series was 3a with nitro and fluoro substitution on the phenyl ring of aryl carboxamide moiety, which inhibited the growth of human leukemia cells (K562 and Reh) at low concentration. Comparison with other derivative (3h) results shown by LDH assay, cell cycle analysis and DNA fragmentation suggested that 3a is more potent to induce apoptosis.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A series of novel 2-(4-(2,4-dimethoxybenzoyl)phenoxy)-1-(4-(3-(piperidin-4-yl)propyl) piperidin-1-yl)ethanone derivatives 9(ae) and 10(ag) were synthesized and characterized by 1H NMR, IR, mass spectral, and elemental analysis. These novel compounds were evaluated for their antileukemic activity against two human leukemic cell lines (K562 and CEM) by using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazoliumbromide assay. Some of the tested compounds showed good antiproliferative activity with IC50 values ranging from 1.6 to 8.0 mu m. Compound 9c, 9e, and 10f with an electron-withdrawing halogen substituent at the para position on the phenyl ring showed excellent in vitro potency against tested human leukemia cells (K562 and CEM).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

An in silico approach was adopted to identify potential cyclooxygenase-2 inhibitors through molecular docking studies. The in vivo studies indicated that synthetic palmitoyl derivatives of salicylic acid, para amino phenol, para amino benzoic acid, and anthranilic acid possessed significant pharmacological activities like anti-inflammatory, analgesic, and antipyretic activities. None of the tested substances produced any significant gastric lesions in experimental animals. In an attempt to understand the ligandprotein interactions in terms of the binding affinity, the above synthetic molecules were subjected to docking analysis using AutoDock. The palmitoyl derivatives palmitoyl anthranilic acid, palmitoyl para amino benzoic acid, palmitoyl para amino phenol, and palmitoyl salicylic acid showed better binding energy than the known inhibitor diclofenac bound to 1PXX. All the palmitoyl derivatives made similar interactions with the binding site residues of cyclooxygenase-2 as compared to that of the known inhibitor. Thus, structure-based drug discovery approach was successfully employed to identify some promising pro-drugs for the treatment of pain and inflammation.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The constant increase in the number of solved protein structures is of great help in understanding the basic principles behind protein folding and evolution. 3-D structural knowledge is valuable in designing and developing methods for comparison, modelling and prediction of protein structures. These approaches for structure analysis can be directly implicated in studying protein function and for drug design. The backbone of a protein structure favours certain local conformations which include alpha-helices, beta-strands and turns. Libraries of limited number of local conformations (Structural Alphabets) were developed in the past to obtain a useful categorization of backbone conformation. Protein Block (PB) is one such Structural Alphabet that gave a reasonable structure approximation of 0.42 angstrom. In this study, we use PB description of local structures to analyse conformations that are preferred sites for structural variations and insertions, among group of related folds. This knowledge can be utilized in improving tools for structure comparison that work by analysing local structure similarities. Conformational differences between homologous proteins are known to occur often in the regions comprising turns and loops. Interestingly, these differences are found to have specific preferences depending upon the structural classes of proteins. Such class-specific preferences are mainly seen in the all-beta class with changes involving short helical conformations and hairpin turns. A test carried out on a benchmark dataset also indicates that the use of knowledge on the class specific variations can improve the performance of a PB based structure comparison approach. The preference for the indel sites also seem to be confined to a few backbone conformations involving beta-turns and helix C-caps. These are mainly associated with short loops joining the regular secondary structures that mediate a reversal in the chain direction. Rare beta-turns of type I' and II' are also identified as preferred sites for insertions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Flap dynamics of HIV-1 protease (HIV-pr) controls the entry of inhibitors and substrates to the active site. Dynamical models from previous simulations are not all consistent with each other and not all are supported by the NMR results. In the present work, the er effect of force field on the dynamics of HIV-pr is investigated by MD simulations using three AMBER force fields ff99, ff99SB, and ff03. The generalized order parameters for amide backbone are calculated from the three force fields and compared with the NMR S2 values. We found that the ff99SB and ff03 force field calculated order parameters agree reasonably well with the NMR S2 values, whereas ff99 calculated values deviate most from the NMR order parameters. Stereochemical geometry of protein models from each force field also agrees well with the remarks from NMR S2 values. However, between ff99SB and ff03, there are several differences, most notably in the loop regions. It is found that these loops are, in general, more flexible in the ff03 force field. This results in a larger active site cavity in the simulation with the ff03 force field. The effect of this difference in computer-aided drug design against flexible receptors is discussed.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Aluminium and zinc are known to be the major triggering agents for aggregation of amyloid peptides leading to plaque formation in Alzheimer's disease. While zinc binding to histidine in A (amyloid ) fragments has been implicated as responsible for aggregation, not much information is available on the interaction of aluminium with histidine. In the NMR study of the N-terminal A fragments, DAEFRHDSGYEV (A12) and DAEFRHDSGYEVHHQK (A16) presented here, the interactions of the fragments with aluminium have been investigated. Significant chemical shifts were observed for few residues near the C-terminus when aluminium chloride was titrated with A12 and A16 peptides. Surprisingly, it is nonhistidine residues which seem to be involved in aluminium binding. Based on NMR constrained structure obtained by molecular modelling, aluminium-binding pockets in A12 were around charged residues such as Asp, Glu. The results are discussed in terms of native structure propagation, and the relevance of histidine residues in the sequences for metal-binding interactions. We expect that the study of such short amyloid peptide fragments will not only provide clues for plaque formation in aggregated conditions but also facilitate design of potential drugs for these targets.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Most of the biological processes are governed through specific protein-ligand interactions. Discerning different components that contribute toward a favorable protein-ligand interaction could contribute significantly toward better understanding protein function, rationalizing drug design and obtaining design principles for protein engineering. The Protein Data Bank (PDB) currently hosts the structure of similar to 68 000 protein-ligand complexes. Although several databases exist that classify proteins according to sequence and structure, a mere handful of them annotate and classify protein-ligand interactions and provide information on different attributes of molecular recognition. In this study, an exhaustive comparison of all the biologically relevant ligand-binding sites (84 846 sites) has been conducted using PocketMatch: a rapid, parallel, in-house algorithm. PocketMatch quantifies the similarity between binding sites based on structural descriptors and residue attributes. A similarity network was constructed using binding sites whose PocketMatch scores exceeded a high similarity threshold (0.80). The binding site similarity network was clustered into discrete sets of similar sites using the Markov clustering (MCL) algorithm. Furthermore, various computational tools have been used to study different attributes of interactions within the individual clusters. The attributes can be roughly divided into (i) binding site characteristics including pocket shape, nature of residues and interaction profiles with different kinds of atomic probes, (ii) atomic contacts consisting of various types of polar, hydrophobic and aromatic contacts along with binding site water molecules that could play crucial roles in protein-ligand interactions and (iii) binding energetics involved in interactions derived from scoring functions developed for docking. For each ligand-binding site in each protein in the PDB, site similarity information, clusters they belong to and description of site attributes are provided as a relational database-protein-ligand interaction clusters (PLIC).

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tuberculosis (TB) is a life threatening disease caused due to infection from Mycobacterium tuberculosis (Mtb). That most of the TB strains have become resistant to various existing drugs, development of effective novel drug candidates to combat this disease is a need of the day. In spite of intensive research world-wide, the success rate of discovering a new anti-TB drug is very poor. Therefore, novel drug discovery methods have to be tried. We have used a rule based computational method that utilizes a vertex index, named `distance exponent index (D-x)' (taken x = -4 here) for predicting anti-TB activity of a series of acid alkyl ester derivatives. The method is meant to identify activity related substructures from a series a compounds and predict activity of a compound on that basis. The high degree of successful prediction in the present study suggests that the said method may be useful in discovering effective anti-TB compound. It is also apparent that substructural approaches may be leveraged for wide purposes in computer-aided drug design.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

G protein-coupled receptors (GPCRs) are the largest family of proteins within the human genome. They consist of seven transmembrane (TM) helices, with a N-terminal region of varying length and structure on the extracellular side, and a C-terminus on the intracellular side. GPCRs are involved in transmitting extracellular signals to cells, and as such are crucial drug targets. Designing pharmaceuticals to target GPCRs is greatly aided by full-atom structural information of the proteins. In particular, the TM region of GPCRs is where small molecule ligands (much more bioavailable than peptide ligands) typically bind to the receptors. In recent years nearly thirty distinct GPCR TM regions have been crystallized. However, there are more than 1,000 GPCRs, leaving the vast majority of GPCRs with limited structural information. Additionally, GPCRs are known to exist in a myriad of conformational states in the body, rendering the static x-ray crystal structures an incomplete reflection of GPCR structures. In order to obtain an ensemble of GPCR structures, we have developed the GEnSeMBLE procedure to rapidly sample a large number of variations of GPCR helix rotations and tilts. The lowest energy GEnSeMBLE structures are then docked to small molecule ligands and optimized. The GPCR family consists of five subfamilies with little to no sequence homology between them: class A, B1, B2, C, and Frizzled/Taste2. Almost all of the GPCR crystal structures have been of class A GPCRs, and much is known about their conserved interactions and binding sites. In this work we particularly focus on class B1 GPCRs, and aim to understand that family’s interactions and binding sites both to small molecules and their native peptide ligands. Specifically, we predict the full atom structure and peptide binding site of the glucagon-like peptide receptor and the TM region and small molecule binding sites for eight other class B1 GPCRs: CALRL, CRFR1, GIPR, GLR, PACR, PTH1R, VIPR1, and VIPR2. Our class B1 work reveals multiple conserved interactions across the B1 subfamily as well as a consistent small molecule binding site centrally located in the TM bundle. Both the interactions and the binding sites are distinct from those seen in the more well-characterized class A GPCRs, and as such our work provides a strong starting point for drug design targeting class B1 proteins. We also predict the full structure of CXCR4 bound to a small molecule, a class A GPCR that was not closely related to any of the class A GPCRs at the time of the work.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Based on numerous pharmacological studies that have revealed an interaction between cannabinoid and opioid systems at the molecular, neurochemical, and behavioral levels, a new series of hybrid molecules has been prepared by coupling the molecular features of two well-known drugs, ie, rimonabant and fentanyl. The new compounds have been tested for their affinity and functionality regarding CB1 and CB2 cannabinoid and mu opioid receptors. In [S-35]-GTP.S (guanosine 5'-O-[gamma-thio] triphosphate) binding assays from the post-mortem human frontal cortex, they proved to be CB1 cannabinoid antagonists and mu opioid antagonists. Interestingly, in vivo, the new compounds exhibited a significant dual antagonist action on the endocannabinoid and opioid systems.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A doença de Chagas é uma doença tropical infecciosa e negligenciada responsável por um grande número de pessoas infectadas e em risco de infecção, principalmente nas regiões pobres da América Latina. No momento, apenas duas drogas, Benzonidazol e Nifurtimox, estão disponíveis para o tratamento da doença de Chagas, mas são ineficazes por apresentarem baixa taxa de cura. O Megazol é um importante representante da classe dos nitroimidazóis e é uma alternativa promissora devido ao seu potencial tripanocida com um perfil superior de ação quando comparado ao tratamento disponível. No entanto, o Megazol não é utilizado clinicamente uma vez que possui atividade mutagênica e carcinogênica relatada. O Instituto de Tecnologia em Fármacos (Farmanguinhos) desenvolveu três análogos do Megazol: PTAL 05-02 (3-amino-5-(1-metil-5-nitro-1H-imidazol-2-il)-1H-1,2,4-triazol), PAMT 09 (2-amino-N-(1-metil-4-nitro-1H-imidazol-5-il)-5-(trifluorometil)-1H-1,2,4-triazol) e PTAL 04-09 (1-(1-metil-4-nitro-1H-imidazol-5-il)-1H-pirazol). O objetivo deste trabalho é apresentar novas moléculas análogas do Megazol com atividade tripanocida, desenvolvidas a partir de estratégias racionais de desenvolvimento de substâncias bioativas ao manter o perfil farmacodinâmico do Megazol enquanto tenta diminuir ou remover o efeito genotóxico. Testes genotóxicos na avaliação segura de novas substâncias bioativas foram utilizados, de acordo com as diretrizes da OECD. O teste da Salmonella/microssoma foi utilizado na avaliação mutagênica e citotóxica, utilizando linhagens de Salmonella enterica sorovar Typhimurium, deficientes e supercompetentes na síntese de enzimas nitroredutase e acetiltransferase. O análogo PAMT 09 não foi mutagênico em nenhuma concentração e linhagem utilizada. Os análogos PTAL 05-02 e PTAL 04-09 foram mutagênicos, na ausência de S9 mix, para a linhagem TA98/1,8-DNP6. Na avaliação de citotoxicidade, os três análogos foram citotóxicos, independente de metabolização exógena S9 mix. O teste do micronúcleo, utilizando células de macrófago de rato, foi realizado para a avaliação genotóxica dos análogos do Megazol. Os três análogos foram capazes de induzir a formação de micronúcleos e apresentaram efeito citotóxico.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Structural complexity is an inherent feature of the human telomeric sequence, and it presents a major challenge for developing ligands of pharmaceutical interest. Recent studies have pointed out that the induction of a quadruplex or change of a quadruplex conformation on binding may be the most powerful method to exert the desired biological effect. In this study, we demonstrate a quadruplex ligand that binds selectively to different forms of the human telomeric G-quadruplex structure and regulates its conformational switch. The results show that not only can oxazine750 selectively induce parallel quadruplex formation from a random coil telomeric oligonucleotide, in the absence of added cations, it also can easily surpass the energy barrier between two structures and change the G-quadruplex conformation in Na+ or K+ solution. The combination of its unique properties, including the size and shape of the G-quadruplex and the small molecule, is proposed as the predominant force for regulating the special structural formation and transitions.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

As the leading nanodevice candidate, single-walled carbon nano-tubes (SWNTs) have potential therapeutic applications in gene therapy and novel drug delivery. We found that SWNTs can inhibit DNA duplex association and selectively induce human telomeric i-motif DNA formation by binding to the 5'-end major groove under physiological conditions or even at pH 8.0. SWNT binding to telomeric DNA was studied by UV melting, NMR, S1 nuclease cleavage, CD, and competitive FRET methods. These results suggest that SWNTs might have the intriguing potential to modulate human telomeric DNA structures in vivo, like biologically relevant B-A and B-Z DNA transitions, which is of great interest for drug design and cancer therapy.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Different DNA selectivity was found for the newly synthesized europium-L-valine complex. Unexpected DNA and RNA selection results showed that europium-L-valine complex can cause single-stranded polydA and polyrA to self-structure. The sigmoidal melting curve profiles indicate the transition is cooperative, similar to the cooperative melting of a duplex DNA. This is different from another europium amino acid complex, europium-L-aspartic acid complex which can induce B-Z transition under the low salt condition. To our knowledge, there is no report to show that a metal-amino acid complex can cause the self-structuring of single-stranded DNA and RNA.