912 resultados para Drop-In Clinics


Relevância:

90.00% 90.00%

Publicador:

Resumo:

Most metabolic functions are optimized within a narrow range of body temperatures, which is why thermoregulation is of great importance for the survival and overall fitness of an animal. It has been proposed that lizards will thermoregulate less precisely in low thermal quality environments, where the costs associated with thermoregulation are high; in the case of lizards, whose thermoregulation is mainly behavioural, the primary costs ofthermoregulation are those derived from locomotion. Decreasing thermoregulatory precision in costly situations is a strategy that enhances fitness by allowing lizards to be more flexible to changing environmental conditions. It allows animals to maximize the benefits of maintaining a relatively high body temperature while minimizing energy expenditure. In situations where oxygen concentration is low, the costs of thermoregulation are relatively high (i.e. in relation to the amount of oxygen available for metabolic functions). As a result, it is likely that exposures to hypoxic conditions induce a decrease in the precision of thermoregulation. This study evaluated the effects of hypoxia and low environmental thermal quality, two energetically costly conditions, on the precision and level of thermoregulation in the bearded dragon, Pogona vitticeps, in an electronic temperature-choice shuttle box. Four levels of hypoxia (1O, 7, 5 and 4% 02) were tested. Environmental thermal quality was manipulated by varying the rate of temperature change (oTa) in an electronic temperature-choice shuttle box. Higher oT a's translate into more thermally challenging environments, since under these conditions the animals are forced to move a greater number of times (and hence invest more energy in locomotion) to maintain similar temperatures than at lower oTa's. In addition, lizards were tested in an "extreme temperatures" treatment during which air temperatures of the hot and cold compartments of the shuttle box were maintained at a constant 50 and 15°C respectively. This was considered the most thermally challenging environment. The selected ambient (T a) and internal body temperatures (Tb) of bearded dragons, as well as the thermoregulatory precision (measured by the central 68% ofthe Ta and T b distribution) were evaluated. The thermoregulatory response was similar to both conditions. A significant increase in the size of the Tb range, reflecting a decrease in thermoregulatory precision, and a drop in preferred body temperature of ~2 °C, were observed at both 4% oxygen and at the environment of lowest thermal quality. The present study suggests that in energetically costly situations, such as the ones tested in this study, the bearded dragon reduces energy expenditure by decreasing preferred body temperature and minimizing locomotion, at the expense of precise behavioural thermoregulation. The close similarity of the behavioural thermoregulatory response to two very different stimuli suggests a possible common mechanism and neuronal pathway to the thermoregulatory response.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Mammalian heterotherms, such as hibemators, are known to be more tolerant of low oxygen tensions than their homeothermic counterparts. It has been suggested that this relative hypoxia tolerance is related to their ability to deal with dramatic changes in body temperature during entry to and arousal from torpor. However, hibemators demonstrate dramatic seasonality in both daily heterothermy and overall torpor expression. It was of interest to test if seasonal comparisons of normothermic individuals within a single species with the capacity to hibernate produce changes in the response to hypoxia that would reflect a seasonal change in tolerance to low oxygen. In particular, the species studied, the Eastern chipmunk {Tamias striatus), is known to enter into torpor exclusively in the winter. To test for seasonal differences in the metabolic and thermoregulatory responses to hypoxia, flow-through respirometry was used to compare metabolic rate, minimum thermal conductance, body temperature, and a thermal gradient used to assess selected ambient temperature in response to hypoxia in both summer and winter acclimated animals. Although the animals periodically expressed torpor throughout the winter, no differences between season in resting metabolic rate, body temperature or minimum thermal conductance were observed in normoxia. The metabolic trials indicated that chipmunks are less responsive to hypoxia in the winter than they are in the summer. Although body temperature dropped in response to hypoxia in both seasons, the decrease was less in the winter, and there was no corresponding decrease in metabolic rate. Providing the animals with a choice of ambient temperatures in hypoxia resulted in a blunting of the drop in body temperature in both seasons, suggesting that the reported fall in body temperature set point in hypoxia is not fully manifested in the behavioural pathways responsible for thermoregulation in chipmunks. Instead, body temperature in hypoxia appears to be highly dependent on ambient temperature and oxygen concentration. The results of this study suggest that the season in which the responses to hypoxia are measured is important, especially in a heterotherm where seasonality can affect the degree to 1 which the animal is tolerant of hypoxia. Winter-acclimated chipmunks appear more capable of defending metabolic heat production in hypoxia, a response consistent with the increased thermogenic capacity observed in animals that must periodically enter and arouse from torpor during hibernation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Increase in sea surface temperature with global warming has an impact on coastal upwelling. Past two decades (1988 to 2007) of satellite observed sea surface temperatures and space borne scatterometer measured winds have provided an insight into the dynamics of coastal upwelling in the southeastern Arabian Sea, in the global warming scenario. These high resolution data products have shown inconsistent variability with a rapid rise in sea surface temperature between 1992 and 1998 and again from 2004 to 2007. The upwelling indices derived from both sea surface temperature and wind have shown that there is an increase in the intensity of upwelling during the period 1998 to 2004 than the previous decade. These indices have been modulated by the extreme climatic events like El–Nino and Indian Ocean Dipole that happened during 1991–92 and 1997–98. A considerable drop in the intensity of upwelling was observed concurrent with these events. Apart from the impact of global warming on the upwelling, the present study also provides an insight into spatial variability of upwelling along the coast. Noticeable fact is that the intensity of offshore Ekman transport off 8oN during the winter monsoon is as high as that during the usual upwelling season in summer monsoon. A drop in the meridional wind speed during the years 2005, 2006 and 2007 has resulted in extreme decrease in upwelling though the zonal wind and the total wind magnitude are a notch higher than the previous years. This decrease in upwelling strength has resulted in reduced productivity too.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The paper analyzes the effects of land reform on social development – poverty and land distribution-at the local level. Land reform in Colombia, understood as the allocation of public land to peasant, has granted 23 million hectares which comprises around 20% of Colombian territory and about 50% of usable productive land. Theoretically, the net impact of land reform on development is the combination of a poverty effect and a land distribution effect. Our findings suggest that land reform from 1961 onwards has slightly reduced poverty and mildly improved land distribution. Nonetheless,municipalities with strong presence of latifundia prior to1961 have experienced both a slower drop in poverty and a weaker improvement of land distribution .This paper finds that prevalence of latifundia partially offset the positive effect of land reform in promoting social development.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The near-Earth heliospheric magnetic field intensity, |B|, exhibits a strong solar cycle variation, but returns to the same ``floor'' value each solar minimum. The current minimum, however, has seen |B| drop below previous minima, bringing in to question the existence of a floor, or at the very least requiring a re-assessment of its value. In this study we assume heliospheric flux consists of a constant open flux component and a time-varying contribution from CMEs. In this scenario, the true floor is |B| with zero CME contribution. Using observed CME rates over the solar cycle, we estimate the ``no-CME'' |B| floor at ~4.0 +/- 0.3 nT, lower than previous floor estimates and below |B| observed this solar minimum. We speculate that the drop in |B| observed this minimum may be due to a persistently lower CME rate than the previous minimum, though there are large uncertainties in the supporting observational data.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rhizobium leguminosarum synthesizes polyhydroxybutyrate and glycogen as its main carbon storage compounds. To examine the role of these compounds in bacteroid development and in symbiotic efficiency, single and double mutants of R. legumosarum bv. viciae were made which lack polyhydroxybutyrate synthase (phaC), glycogen synthase (glgA), or both. For comparison, a single phaC mutant also was isolated in a bean-nodulating strain of R. leguminosarum bv. phaseoli. In one large glasshouse trial, the growth of pea plants inoculated with the R. leguminosarum bv. viciae phaC mutant were significantly reduced compared with wild-type-inoculated plants. However, in subsequent glasshouse and growth-room studies, the growth of pea plants inoculated with the mutant were similar to wildtype-inoculated plants. Bean plants were unaffected by the loss of polyhydroxybutyrate biosynthesis in bacteroids. Pea plants nodulated by a glycogen synthase mutants or the glgA/phaC double mutant, grew as well as the wild type in growth-room experiments. Light and electron micrographs revealed that pea nodules infected with the glgA mutant accumulated large amounts of starch in the II/III interzone. This suggests that glycogen may be the dominant carbon storage compound in pea bacteroids. Polyhydroxybutyrate was present in bacteria in the infection thread of pea plants but was broken down during bacteroid formation. In nodules infected with a phaC mutant of R. leguminosarum bv. viciae, there was a drop in the amount of starch in the II/III interzone, where bacteroids form. Therefore, we propose a carbon burst hypothesis for bacteroid formation, where polyhydroxybutyrate accumulated by bacteria is degraded to fuel bacteroid differentiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influence, was investigated, of abiotic parameters on the isolation of protoplasts from in vitro seedling cotyledons of white lupin. The protoplasts were found to be competent in withstanding a wide range of osmotic potentials of the enzyme medium, however, -2.25 MPa (0.5 M mannitol), resulted in the highest yield of protoplasts. The pH of the isolation medium also had a profound effect on protoplast production. Vacuum infiltration of the enzyme solution into the cotyledon tissue resulted in a progressive drop in the yield of protoplasts. The speed and duration of orbital agitation of the cotyledon tissue played a significant role in the release of protoplasts and a two step (stationary-gyratory) regime was found to be better than the gyratory-only system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Background: Severe malarial anaemia is a major complication of malaria infection and is multifactorial resulting from loss of circulating red blood cells (RBCs) from parasite replication, as well as immune-mediated mechanisms. An understanding of the causes of severe malarial anaemia is necessary to develop and implement new therapeutic strategies to tackle this syndrome of malaria infection. Methods: Using analysis of variance, this work investigated whether parasite-destruction of RBCs always accounts for the severity of malarial anaemia during infections of the rodent malaria model Plasmodium chabaudi in mice of a BALB/c background. Differences in anaemia between two different clones of P. chabaudi were also examined. Results: Circulating parasite numbers were not correlated with the severity of anaemia in either BALB/c mice or under more severe conditions of anaemia in BALB/c RAG2 deficient mice (lacking T and B cells). Mice infected with P. chabaudi clone CB suffered more severe anaemia than mice infected with clone AS, but this was not correlated with the number of parasites in the circulation. Instead, the peak percentage of parasitized RBCs was higher in CB-infected animals than in AS-infected animals, and was correlated with the severity of anaemia, suggesting that the availability of uninfected RBCs was impaired in CB-infected animals. Conclusion: This work shows that parasite numbers are a more relevant measure of parasite levels in P. chabaudi infection than % parasitaemia, a measure that does not take anaemia into account. The lack of correlation between parasite numbers and the drop in circulating RBCs in this experimental model of malaria support a role for the host response in the impairment or destruction of uninfected RBC in P. chabaudi infections, and thus development of acute anaemia in this malaria model.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Rhizobium leguminosarum synthesizes polyhydroxybutyrate and glycogen as its main carbon storage compounds. To examine the role of these compounds in bacteroid development and in symbiotic efficiency, single and double mutants of R. legumosarum bv. viciae were made which lack polyhydroxybutyrate synthase (phaC), glycogen synthase (glgA), or both. For comparison, a single phaC mutant also was isolated in a bean-nodulating strain of R. leguminosarum bv. phaseoli. In one large glasshouse trial, the growth of pea plants inoculated with the R. leguminosarum bv. viciae phaC mutant were significantly reduced compared with wild-type-inoculated plants. However, in subsequent glasshouse and growth-room studies, the growth of pea plants inoculated with the mutant were similar to wildtype-inoculated plants. Bean plants were unaffected by the loss of polyhydroxybutyrate biosynthesis in bacteroids. Pea plants nodulated by a glycogen synthase mutants or the glgA/phaC double mutant, grew as well as the wild type in growth-room experiments. Light and electron micrographs revealed that pea nodules infected with the glgA mutant accumulated large amounts of starch in the II/III interzone. This suggests that glycogen may be the dominant carbon storage compound in pea bacteroids. Polyhydroxybutyrate was present in bacteria in the infection thread of pea plants but was broken down during bacteroid formation. In nodules infected with a phaC mutant of R. leguminosarum bv. viciae, there was a drop in the amount of starch in the II/III interzone, where bacteroids form. Therefore, we propose a carbon burst hypothesis for bacteroid formation, where polyhydroxybutyrate accumulated by bacteria is degraded to fuel bacteroid differentiation.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The influence, was investigated, of abiotic parameters on the isolation of protoplasts from in vitro seedling cotyledons of white lupin. The protoplasts were found to be competent in withstanding a wide range of osmotic potentials of the enzyme medium, however, −2.25 MPa (0.5 M mannitol), resulted in the highest yield of protoplasts. The pH of the isolation medium also had a profound effect on protoplast production. Vacuum infiltration of the enzyme solution into the cotyledon tissue resulted in a progressive drop in the yield of protoplasts. The speed and duration of orbital agitation of the cotyledon tissue played a significant role in the release of protoplasts and a two step (stationary-gyratory) regime was found to be better than the gyratory-only system.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We present results on the growth of damage in 29 fatigue tests of human femoral cortical bone from four individuals, aged 53–79. In these tests we examine the interdependency of stress, cycles to failure, rate of creep strain, and rate of modulus loss. The behavior of creep rates has been reported recently for the same donors as an effect of stress and cycles (Cotton, J. R., Zioupos, P., Winwood, K., and Taylor, M., 2003, "Analysis of Creep Strain During Tensile Fatigue of Cortical Bone," J. Biomech. 36, pp. 943–949). In the present paper we first examine how the evolution of damage (drop in modulus per cycle) is associated with the stress level or the "normalized stress" level (stress divided by specimen modulus), and results show the rate of modulus loss fits better as a function of normalized stress. However, we find here that even better correlations can be established between either the cycles to failure or creep rates versus rates of damage than any of these three measures versus normalized stress. The data indicate that damage rates can be excellent predictors of fatigue life and creep strain rates in tensile fatigue of human cortical bone for use in practical problems and computer simulations.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mechanism of active stress generation in tension wood is still not fully understood. To characterize the functional interdependency between the G-layer and the secondary cell wall, nanostructural characterization and mechanical tests were performed on native tension wood tissues of poplar (Populus nigra x Populus deltoids) and on tissues in which the G-layer was removed by an enzymatic treatment. In addition to the well-known axial orientation of the cellulose fibrils in the G-layer, it was shown that the microfibril angle of the S2-layer was very large (about 36 degrees). The removal of the G-layer resulted in an axial extension and a tangential contraction of the tissues. The tensile stress-strain curves of native tension wood slices showed a jagged appearance after yield that could not be seen in the enzyme-treated samples. The behaviour of the native tissue was modelled by assuming that cells deform elastically up to a critical strain at which the G-layer slips, causing a drop in stress. The results suggest that tensile stresses in poplar are generated in the living plant by a lateral swelling of the G-layer which forces the surrounding secondary cell wall to contract in the axial direction.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The potentials of applying the lactoperoxidase system (LPS) in extending the shelf life of raw milk at ambient temperatures was investigated in the western highlands of Cameroon. Raw milk was LPS-activated by adding various concentrations (ppm) of thiocyanate and peroxide and denoted as 0:0, 7:10 ppm, 10:10 ppm and 20:20 ppm. The keeping quality of the activated milk samples was assessed by the alcohol stability and clot-on-boiling tests, pH changes and titratable acidity. The milk in all the treatments remained fresh during the first 12 hours but the control was spoiled by the 15th hour. There was a continuous drop in pH values matched by a steady rise in titratable acidity. For all parameters measured, 20:20ppm was the last treatment to spoil, suggesting that the shelf life of milk increases with increasing concentrations of thiocyanate and peroxide. With small amounts of thiocyanate (20 ppm) and peroxide (20 ppm) the shelf life of raw milk can effectively be extended under Cameroonian conditions by approximately 9 hours without refrigeration. Thus LPS-activated milk can be stored for as long 21 hours, allowing sufficient time for its appropriate disposal.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Several previous studies have attempted to assess the sublimation depth-scales of ice particles from clouds into clear air. Upon examining the sublimation depth-scales in the Met Office Unified Model (MetUM), it was found that the MetUM has evaporation depth-scales 2–3 times larger than radar observations. Similar results can be seen in the European Centre for Medium-Range Weather Forecasts (ECMWF), Regional Atmospheric Climate Model (RACMO) and Météo-France models. In this study, we use radar simulation (converting model variables into radar observations) and one-dimensional explicit microphysics numerical modelling to test and diagnose the cause of the deep sublimation depth-scales in the forecast model. The MetUM data and parametrization scheme are used to predict terminal velocity, which can be compared with the observed Doppler velocity. This can then be used to test the hypothesis as to why the sublimation depth-scale is too large within the MetUM. Turbulence could lead to dry air entrainment and higher evaporation rates; particle density may be wrong, particle capacitance may be too high and lead to incorrect evaporation rates or the humidity within the sublimating layer may be incorrectly represented. We show that the most likely cause of deep sublimation zones is an incorrect representation of model humidity in the layer. This is tested further by using a one-dimensional explicit microphysics model, which tests the sensitivity of ice sublimation to key atmospheric variables and is capable of including sonde and radar measurements to simulate real cases. Results suggest that the MetUM grid resolution at ice cloud altitudes is not sufficient enough to maintain the sharp drop in humidity that is observed in the sublimation zone.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Inference on the basis of recognition alone is assumed to occur prior to accessing further information (Pachur & Hertwig, 2006). A counterintuitive result of this is the “less-is-more” effect: a drop in the accuracy with which choices are made as to which of two or more items scores highest on a given criterion as more items are learned (Frosch, Beaman & McCloy, 2007; Goldstein & Gigerenzer, 2002). In this paper, we show that less-is-more effects are not unique to recognition-based inference but can also be observed with a knowledge-based strategy provided two assumptions, limited information and differential access, are met. The LINDA model which embodies these assumptions is presented. Analysis of the less-is-more effects predicted by LINDA and by recognition-driven inference shows that these occur for similar reasons and casts doubt upon the “special” nature of recognition-based inference. Suggestions are made for empirical tests to compare knowledge-based and recognition-based less-is-more effects