945 resultados para Dorsal Premotor Cortex


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pharmacological studies have been focused on the involvement of different neural pathways in the organization of antinociception that follows tonic-clonic seizures, including 5-hydroxytryptamine (5-HT)-, norepinephrine-, acetylcholine- and endogenous opioid peptide-mediated mechanisms, giving rise to more in-depth comprehension of this interesting post-ictal antinociceptive phenomenon. The present work investigated the involvement of 5-HT(1A/1B), 5-HT(6), and 5-HT(7) serotonergic receptors through peripheral pretreatment with methiothepin at doses of 0.5, 1.0, 2.0 and 3.0 mg/kg in the organization of the post-ictal antinociception elicited by pharmacologically (with pentylenetetrazole at 64 mg/kg)-induced tonic-clonic seizures. Methiothepin at 1.0 mg/kg blocked the post-ictal antinociception recorded after the end of seizures, whereas doses of 2.0 and 3.0 mg/kg potentiated the post-ictal antinociception. The nociceptive thresholds were kept higher than those of the control group. However, when the same 5-hydroxytryptamine receptors antagonist was microinjected (at 1.0, 3.0 and 5.0 mu g/0.2 mu L) in the dorsal raphe nucleus, a mesencephalic structure rich in serotonergic neurons and 5-HT receptors, the post-ictal hypo-analgesia was consistently antagonized. The present findings suggest a dual effect of methiothepin, characterized by a disinhibitory effect on the post-ictal antinociception when peripherally administered (possibly due to an antagonism of pre-synaptic 5-HT(1A) serotonergic autoreceptors in the pain endogenous inhibitory system) and an inhibitory effect (possibly due to a DRN post-synaptic 5-HT(1B), 5-HT(6), and 5-HT(7) serotonergic receptors blockade) when centrally administered. The present data also Suggest that serotonin-mediated mechanisms of the dorsal raphe nucleus exert a key-role in the modulation of the post-ictal antinociception. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The electrical stimulation of the occipital (OC) or retrosplenial (RSC) cortex produces antinociception in the rat tail-flick test. These cortices send inputs to the anterior pretectal nucleus (APtN) which is implicated in antinociception and nociception. At least muscarinic cholinergic, opioid, and serotonergic mechanisms in the APtN are involved in stimulation-produced antinociception (SPA) from the nucleus. In this study, the injection of 2% lidocaine (.25 mu L) or methysergide (40 and 80 ng/.25 mu L) into the APtN reduced the duration but did not change the intensity of SPA from the OC, whereas both duration and intensity of SPA from the RSC were significantly reduced in rats treated with lidocaine or naloxone (10 and 50 ng/.25 mu L), injected into the ANN. Naloxone or methysegide injected into the APtN was ineffective against SPA from the OC or RSC, respectively. Atropine (100 ng/.25 mu L) injected into the ANN was ineffective against SPA from either the OC or RSC. We conclude that the APtN acts as an intermediary for separate descending pain inhibitory pathways activated from the OC and RSC, utilizing at least serotonin and endogenous opioid as mediators in the nucleus. Perspective: Stimulation-induced antinociception from the retrosplenial or occipital cortex in the rat tail-flick test depends on the activation of separate descending pain inhibitory pathways that utilize the APtN as a relay station. (C) 2011 by the American Pain Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ventral portion of medial prefrontal cortex (vMPFC) is involved in contextual fear-conditioning expression in rats. In the present study, we investigated the role of local N-methyl-D-aspartic acid (NMDA) glutamate receptors and nitric oxide (NO) in vMPFC on the behavioral (freezing) and cardiovascular (increase of arterial pressure and heart rate) responses of rats exposed to a context fear conditioning. The results showed that both freezing and cardiovascular responses to contextual fear conditioning were reduced by bilateral administration of NMDA receptor antagonist LY235959 (4 nmol/200 nL) into the vMPFC before reexposition to conditioned chamber. Bilateral inhibition of neuronal NO synthase (nNOS) by local vMPFC administration of the N omega-propyl-L-arginine (N-propyl, 0.04 nmol/200 nL) or the NO scavenger carboxy-PTI0 (1 nmol/200 A) caused similar results, inhibiting the fear responses. We also investigated the effects of inhibiting glutamate- and NO-mediated neurotransmission in the vMPFC at the time of aversive context exposure on reexposure to the same context. It was observed that the 1st exposure results in a significant attenuation of the fear responses on reexposure in vehicle-treated animals, which was not modified by the drugs. The present results suggest that a vMPFC NMDA-NO pathway may play an important role on expression of contextual fear conditioning.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In rats, conditioned fear to context causes freezing immobility and cardiovascular changes. The dorsal hippocampus (DH) has a critical role in several memory processes, including conditioning fear to contextual information. To explore a possible involvement of the DH in contextual fear conditioning-evoked cardiovascular (mean arterial pressure and heart rate increases) and behavioral (freezing) responses, DH synaptic transmission was temporarily inhibited by bilateral microinjections of 500 nl of the nonselective synapse blocker, cobalt chloride (COCl2, 1 mmol/l), at different periods of the experimental procedure. During re-exposure to the foot shock chamber in which conditioning had taken place, bilateral DH inhibition 10 min before the conditioning session had no effect on either behavioral or cardiovascular responses. Bilateral DH inhibition immediately after the conditioning session (110 min) decreased both behavioral and cardiovascular responses during the context test. Finally, 48 h after the conditioning session, bilateral DH inhibition 10 min before re-exposure to the foot shock chamber significantly reduced cardiovascular responses but not freezing responses. These results suggest that contextual fear conditioning acquisition does not depend on the DH. This structure, however, is crucial for the consolidation of contextual fear. Moreover, although the DH appears to be less important for the behavioral (freezing) changes induced by re-exposure to the aversive conditioned context, it may play an important role on the cardiovascular responses generated by this model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present study, we describe the cardiovascular effects of local acetylcholine (Ach) microinjection into both the ventrolateral (vlPAG) and dorsal (dPAG) periaqueductal gray areas of anesthetized rats and the possible local receptors involved with these responses. Microinjection of Ach (9, 27, 45 or 81 nmol/50 nL) into the vlPAG caused dose-related depressor responses. These hypotensive responses were blocked by local pretreatment with increasing doses of the nonselective muscarinic antagonist atropine (1, 3 or 9 nmol/50 nL). The microinjection of Ach into the dPAG caused no significant cardiovascular responses in anesthetized rats. In conclusion, the present findings suggest that a cholinergic system present in the vlPAG, but not in the dPAG, is involved with cardiovascular system control. Moreover, these cardiovascular responses evoked by Ach are mediated by muscarinic receptors. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Reversible inactivation of the ventral portion of medial prefrontal cortex (vMPFC) of the rat brain has been shown to induce anxiolytic-like effects in animal models based on associative learning. The role of this brain region in situations involving innate fear, however, is still poorly understood, with several contradictory results in the literature. The objective of the present work was to verify in male Wistar rats the effects of vMPFC administration of cobalt chloride (CoCl(2)), a selective inhibitor of synaptic activity, in rats submitted to two models based on innate fear, the elevated plus-maze (EPM) and light-dark box (LOB), comparing the results with those obtained in two models involving associative learning, the contextual fear conditioning (CFC) and Vogel conflict (VCT) tests. The results showed that, whereas CoCl(2) induced anxiolytic-like effects in the CFC and VCT tests, it enhanced anxiety in rats submitted to the EPM and LOB. Together these results indicate that the vMPFC plays an important but complex role in the modulation of defensive-related behaviors, which seems to depend on the nature of the anxiety/fear inducing stimuli. (C) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The ventral medial prefrontal cortex (vMPFC) has direct connections to subcortical, diencephalic and brainstem structures that have been closely related to depression. However, studies aimed at investigating the role of the vMPFC in the neurobiology of depression have produced contradictory results. Moreover, the precise involvement of vMPFC anatomic subdivisions, the prelimbic(PL) and the infralimbic (IL) cortices, in regulating depressive-like behavior have been poorly investigated. The forced swimming test (FST) is a widely employed animal model aimed at detecting antidepressant-like effects. Therefore, to further investigate a possible involvement of the vMFPC in depressive-like behavior, rats bilaterally implanted with cannulae aimed at the PL or IL prefrontal cortices were submitted to 15 min of forced swimming (pre-test) followed, 24 h later, by a 5-min swimming session (test), where immobility time was registered. Synaptic transmission in these regions was temporarily inhibited using local microinjection of cobalt chloride at different periods of the experimental procedure (before or after the pre-test or before the test). PL inactivation decreased immobility time independently of the time of the injection. In the IL inactivation induced a significant antidepressant-like effect when performed immediately before the pre-test or before the test, but not after the pre-test. These results suggest that activation of the vMPFC is important for the behavioral changes observed in rats submitted to the FST. They further indicate that, although both the PL and IL cortices are involved in these effects, they may play different roles. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dorsal root injury leads to reactive gliosis in the spinal cord dorsal root entry zone and dorsal column, two regions that undergo Wallerian degeneration, but have distinct growth-inhibitory properties. This disparity could in part be due to differences in the number of degenerating sensory fibers, differences in glial cell activation, and/or to differential expression of growth-inhibitory molecules such as chondroitin sulfate proteoglycans. Laser capture microdissection of these two spinal cord white matter regions, followed by quantitative analysis of mRNA expression by real-time PCR, revealed that glial marker transcripts were differentially expressed post-injury and that the chondroitin sulfate proteoglycans Brevican and Versican V1 and V2 were preferentially up-regulated in the dorsal root entry zone, but not the dorsal column. These results indicate that reactive gliosis differs between these two regions and that Brevican and Versican are potential key molecules participating in the highly inhibitory properties of the dorsal root entry zone.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dorsal and ventral pathways for syntacto-semantic speech processing in the left hemisphere are represented in the dual-stream model of auditory processing. Here we report new findings for the right dorsal and ventral temporo-frontal pathway during processing of affectively intonated speech (i.e. affective prosody) in humans, together with several left hemispheric structural connections, partly resembling those for syntacto-semantic speech processing. We investigated white matter fiber connectivity between regions responding to affective prosody in several subregions of the bilateral superior temporal cortex (secondary and higher-level auditory cortex) and of the inferior frontal cortex (anterior and posterior inferior frontal gyrus). The fiber connectivity was investigated by using probabilistic diffusion tensor based tractography. The results underscore several so far underestimated auditory pathway connections, especially for the processing of affective prosody, such as a right ventral auditory pathway. The results also suggest the existence of a dual-stream processing in the right hemisphere, and a general predominance of the dorsal pathways in both hemispheres underlying the neural processing of affective prosody in an extended temporo-frontal network.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To explore possible morphological abnormalities in the dorsal and subgenual parts of anterior cingulate cortex in mood disorders and schizophrenia, we performed a quantitative postmortem study of 44 schizophrenic patients, 21 patients with sporadic bipolar disorder, 20 patients with sporadic major depression, and 55 age- and sex-matched control cases. All individuals were drug naïve or had received psychotropic medication for less than 6 months, and had no history of substance abuse. Neuron densities and size were estimated on cresyl violet-stained sections using a stereological counting approach. The distribution and density of microtubule-associated (MAP2, MAP1b) and tau proteins were assessed by immunocytochemistry and quantitative immunodot assay. Mean total and laminar cortical thicknesses as well as mean pyramidal neuron size were significantly decreased in the dorsal and subgenual parts of areas 24 (24sg) in schizophrenic cases. Patients with bipolar disorder showed a substantial decrease in laminar thickness and neuron densities in layers III, V, and VI of the subgenual part of area 24, whereas patients with major depression were comparable to controls. Immunodot assay showed a significant decrease of both MAP2 and MAP1b proteins in bipolar patients but not in patients with schizophrenia and major depression. The neuroanatomical and functional significance of these findings are discussed in the light of current hypotheses regarding the role of areas 24 and 24sg in schizophrenia and bipolar disorder.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AIMS: Previous neuroimaging reports described morphological and functional abnormalities in anterior cingulate cortex (ACC) in schizophrenia and mood disorders. In earlier neuropathological studies, microvascular changes that could affect brain perfusion in these disorders have rarely been studied. Here, we analysed morphological parameters of capillaries in this area in elderly cases affected by these psychiatric disorders. METHODS: We analysed microvessel diameters in the dorsal and subgenual parts of the ACC in eight patients with schizophrenia, 10 patients with sporadic bipolar disorder, eight patients with sporadic major depression, and seven age- and gender-matched control cases on sections stained with modified Gallyas silver impregnation using a stereological counting approach. All individuals were drug-naïve or had received psychotropic medication for less than 6 months, and had no history of substance abuse. Statistical analysis included Kruskal-Wallis group comparisons with Bonferroni correction as well as multivariate regression models. RESULTS: Mean capillary diameter was significantly decreased in the dorsal and subgenual parts of areas 24 in bipolar and unipolar depression cases, both in layers III and V, whereas schizophrenia patients were comparable with controls. These differences persisted when controlling for age, local neuronal densities, and cortical thickness. In addition, cortical thickness was significantly smaller in both layers in schizophrenia patients. CONCLUSIONS: Our findings indicate that capillary diameters in bipolar and unipolar depression but not in schizophrenia are reduced in ACC. The significance of these findings is discussed in the light of the cytoarchitecture, brain metabolism and perfusion changes observed in ACC in mood disorders.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Multisensory and sensorimotor integrations are usually considered to occur in superior colliculus and cerebral cortex, but few studies proposed the thalamus as being involved in these integrative processes. We investigated whether the organization of the thalamocortical (TC) systems for different modalities partly overlap, representing an anatomical support for multisensory and sensorimotor interplay in thalamus. In 2 macaque monkeys, 6 neuroanatomical tracers were injected in the rostral and caudal auditory cortex, posterior parietal cortex (PE/PEa in area 5), and dorsal and ventral premotor cortical areas (PMd, PMv), demonstrating the existence of overlapping territories of thalamic projections to areas of different modalities (sensory and motor). TC projections, distinct from the ones arising from specific unimodal sensory nuclei, were observed from motor thalamus to PE/PEa or auditory cortex and from sensory thalamus to PMd/PMv. The central lateral nucleus and the mediodorsal nucleus project to all injected areas, but the most significant overlap across modalities was found in the medial pulvinar nucleus. The present results demonstrate the presence of thalamic territories integrating different sensory modalities with motor attributes. Based on the divergent/convergent pattern of TC and corticothalamic projections, 4 distinct mechanisms of multisensory and sensorimotor interplay are proposed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Although there is consensus that the central nervous system mediates the increases in maximal voluntary force (maximal voluntary contraction, MVC) produced by resistance exercise, the involvement of the primary motor cortex (M1) in these processes remains controversial. We hypothesized that 1-Hz repetitive transcranial magnetic stimulation (rTMS) of M1 during resistance training would diminish strength gains. Forty subjects were divided equally into five groups. Subjects voluntarily (Vol) abducted the first dorsal interosseus (FDI) (5 bouts x 10 repetitions, 10 sessions, 4 wk) at 70-80% MVC. Another group also exercised but in the 1-min-long interbout rest intervals they received rTMS [Vol+rTMS, 1 Hz, FDI motor area, 300 pulses/session, 120% of the resting motor threshold (rMT)]. The third group also exercised and received sham rTMS (Vol+Sham). The fourth group received only rTMS (rTMS_only). The 37.5% and 33.3% gains in MVC in Vol and Vol+Sham groups, respectively, were greater (P = 0.001) than the 18.9% gain in Vol+rTMS, 1.9% in rTMS_only, and 2.6% in unexercised control subjects who received no stimulation. Acutely, within sessions 5 and 10, single-pulse TMS revealed that motor-evoked potential size and recruitment curve slopes were reduced in Vol+rTMS and rTMS_only groups and accumulated to chronic reductions by session 10. There were no changes in rMT, maximum compound action potential amplitude (M(max)), and peripherally evoked twitch forces in the trained FDI and the untrained abductor digiti minimi. Although contributions from spinal sources cannot be excluded, the data suggest that M1 may play a role in mediating neural adaptations to strength training.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The present study describes the postnatal expression of calbindin, calretinin and parvalbumin and glutamic acid decarboxylase (GAD) and microtubule-associated protein 2 (MAP2) in organotypic monocultures of rat dorsal thalamus compared to the thalamus in vivo. Cultures were maintained for up to 7 weeks. Cortex-conditioned medium improved the survival of thalamic cultures. MAP2-immunoreactive material was present in somata and dendrites of small and large-sized neurons throughout the cultures. Parvalbumin immunoreactivity was present in larger multipolar or bitufted neurons along the edge of a culture. These neurons also displayed strong parvalbumin mRNA and GAD mRNA expression, and GABA immunoreactivity. They likely corresponded to cells of the nucleus reticularis thalami. Parvalbumin mRNA, but neither parvalbumin protein nor GAD mRNA, was expressed in neurons with large somata within the explant. They likely represented relay cells. GAD mRNA, but not parvalbumin mRNA, was expressed in small neurons within the explants. Small neurons also displayed calbindin- and calretinin-immunoreactivity. The small neurons likely represented local circuit neurons. The time course of expression of the calcium-binding proteins revealed that all were present at birth with the predicted molecular weights. A low, but constant parvalbumin expression was observed in vitro without the developmental increase seen in vivo, which most likely represented parvalbumin from afferent sources. In contrast, the explantation transiently downregulated the calretinin and calbindin expression, but the neurons recovered the expression after 14 and 21 days, respectively. In conclusion, thalamic monocultures older than three weeks represent a stable neuronal network containing well differentiated neurons of the nucleus reticularis thalami, relay cells and local circuit neurons.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The migration of cortical γ-aminobutyric acidergic interneurons has been extensively studied in rodent embryos, whereas few studies have documented their postnatal migration. Combining in vivo analysis together with time-lapse imaging on cortical slices, we explored the origin and migration of cortical interneurons during the first weeks of postnatal life. Strikingly, we observed that a large pool of GAD65-GFP-positive cells accumulate in the dorsal white matter region during the first postnatal week. Part of these cells divides and expresses the transcription factor paired box 6 indicating the presence of local transient amplifying precursors. The vast majority of these cells are immature interneurons expressing the neuronal marker doublecortin and partly the calcium-binding protein calretinin. Time-lapse imaging reveals that GAD65-GFP-positive neurons migrate from the white matter pool into the overlying anterior cingulate cortex (aCC). Some interneurons in the postnatal aCC express the same immature neuronal markers suggesting ongoing migration of calretinin-positive interneurons. Finally, bromodeoxyuridine incorporation experiments confirm that a small fraction of interneurons located in the aCC are generated during the early postnatal period. These results altogether reveal that at postnatal ages, the dorsal white matter contains a pool of interneuron precursors that divide and migrate into the aCC.