953 resultados para Dopaminergic agonists
Resumo:
We examined the activation of the p38 mitogen-activated protein kinase (p38-MAPK) pathway by the G protein-coupled receptor agonists, endothelin-1 and phenylephrine in primary cultures of cardiac myocytes from neonatal rat hearts. Both agonists increased the phosphorylation (activation) of p38-MAPK by approximately 12-fold. A p38-MAPK substrate, MAPK-activated protein kinase 2 (MAPKAPK2), was activated approximately fourfold and 10 microM SB203580, a p38-MAPK inhibitor, abolished this activation. Phosphorylation of the MAPKAPK2 substrate, heat shock protein 25/27, was also increased. Using selective inhibitors, activation of the p38-MAPK pathway by endothelin-1 was shown to involve protein kinase C but not Gi/Go nor the extracellularly responsive kinase (ERK) pathway. SB203580 failed to inhibit the morphological changes associated with cardiac myocyte hypertrophy induced by endothelin-1 or phenylephrine between 4 and 24 h. However, it decreased the myofibrillar organization and cell profile at 48 h. In contrast, inhibition of the ERK cascade with PD98059 prevented the increase in myofibrillar organization but not cell profile. These data are not consistent with a role for the p38-MAPK pathway in the immediate induction of the morphological changes of hypertrophy but suggest that it may be necessary over a longer period to maintain the response.
Resumo:
The small G protein Ras has been implicated in hypertrophy of cardiac myocytes. We therefore examined the activation (GTP loading) of Ras by the following hypertrophic agonists: phorbol 12-myristate 13-acetate (PMA), endothelin-1 (ET-1), and phenylephrine (PE). All three increased Ras.GTP loading by 10-15-fold (maximal in 1-2 min), as did bradykinin. Other G protein-coupled receptor agonists (e.g. angiotensin II, carbachol, isoproterenol) were less effective. Activation of Ras by PMA, ET-1, or PE was reduced by inhibition of protein kinase C (PKC), and that induced by ET-1 or PE was partly sensitive to pertussis toxin. 8-(4-Chlorophenylthio)-cAMP (CPT-cAMP) did not inhibit Ras.GTP loading by PMA, ET-1, or PE. The association of Ras with c-Raf protein was increased by PMA, ET-1, or PE, and this was inhibited by CPT-cAMP. However, only PMA and ET-1 increased Ras-associated mitogen-activated protein kinase kinase 1-activating activity, and this was decreased by PKC inhibition, pertussis toxin, and CPT-cAMP. PMA caused the rapid appearance of phosphorylated (activated) extracellular signal-regulated kinase in the nucleus, which was inhibited by a microinjected neutralizing anti-Ras antibody. We conclude that PKC- and Gi-dependent mechanisms mediate the activation of Ras in myocytes and that Ras activation is required for stimulation of extracellular signal-regulated kinase by PMA.
Resumo:
Cardiac myocyte hypertrophy involves changes in cell structure and alterations in protein expression regulated at both the transcriptional and translational levels. Hypertrophic G protein-coupled receptor (GPCR) agonists such as endothelin-(ET-1) and phenylephrine stimulate a number of protein kinase cascades in the heart. Mitogen-activated protein kinase (MAPK) cascades stimulated include the extracellularly regulated kinase cascade, the stress-activated protein kinase/c-Jun N-terminal kinase cascade, and the p38 MAPK cascade. All 3 pathways have been implicated in hypertrophy, but recent ex vivo evidence also suggests that there may be additional effects on cell survival. ET-1 and phenylephrine also stimulate the protein kinase B pathway, and this may be involved in the regulation of protein synthesis by these agonists. Thus, protein kinase-mediated signaling may be important in the regulation of the development of myocyte hypertrophy.
Resumo:
The small (21-kDa) guanine nucleotide-binding protein Ras plays a central role in the regulation of cell growth and division. In the cardiac myocyte, it has been implicated in the hypertrophic adaptation. We have recently examined the ability of hypertrophic agonists such as endothelin-1, phenylephrine and phorbol esters to increase the "activity" (GTP loading) of Ras. We have also studied the signaling events that lead to activation of Ras and the processes that respond to Ras activation. In this brief review, we describe these studies and set them within the context of the hypertrophic response.
Resumo:
Rats with unilateral lesion of the substantia nigra pars compacta (SNpc) have been used as a model of Parkinson`s disease. Depending on the lesion protocol and on the drug challenge, these rats rotate in opposite directions. The aim of the present study was to propose a model to explain how critical factors determine the direction of these turns. Unilateral lesion of the SNpc was induced with 6-hydroxydopamine (6-OHDA) or 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). Separate analysis showed that neither the type of neurotoxin nor the site of lesion along the nigrostriatal. pathway was able to predict the direction of the turns these rats made after they were challenged with apomorphine. However, the combination of these two factors determined the magnitude of the lesion estimated by tyrosine-hydroxylase immunohistochemistry and HPLC-ED measurement of striatal dopamine. Very small lesions did Dot cause turns, medium-size lesions caused ipsiversive turns, and large lesions caused contraversive turns. Large-size SNpc lesions resulted in an increased binding of [H-3] raclopride to D2 receptors, while medium-size lesions reduced the binding of [H-3]SCH-23390 D1 receptors in the ipsilateral striatum. These results are coherent with the model proposing that after challenged with a dopamine receptor agonist, unilaterally SNpc-lesioned rats rotate toward the side with the weaker activation of dopamine receptors. This activation is weaker on the lesioned side in animals with small SNpc lesions due to the loss of dopamine, but stronger in animals with large lesions due to dopamine receptor supersensitivity. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Hemopressin (Hp), a 9-residue alpha-hemoglobin-derived peptide, was previously reported to function as a CB(1) cannabinoid receptor antagonist (1). In this study, we report that mass spectrometry (MS) data from peptidomics analyses of mouse brain extracts identified N-terminally extended forms of Hp containing either three (RVD-Hp alpha) or two (VD-Hp alpha) additional amino acids, as well as a beta-hemoglobinderived peptide with sequence similarity to that of hemopressin (VD-Hp beta). Characterization of the alpha-hemoglobin-derived peptides using binding and functional assays shows that in contrast to Hp, which functions as a CB(1) cannabinoid receptor antagonist, both RVD-Hp alpha and VD-Hp alpha function as agonists. Studies examining the increase in the phosphorylation of ERK1/2 levels or release of intracellular Ca(2+) indicate that these peptides activate a signal transduction pathway distinct from that activated by the endo-cannabinoid, 2-arachidonoylglycerol, or the classic CB(1) agonist, Hu-210. This finding suggests an additional mode of regulation of endogenous cannabinoid receptor activity. Taken together, these results suggest that the CB(1) receptor is involved in the integration of signals from both lipid-and peptide-derived signaling molecules.-Gomes, I., Grushko, J. S., Golebiewska, U., Hoogendoorn, S., Gupta, A., Heimann, A. S., Ferro, E. S., Scarlata, S., Fricker, L. D., Devi, L. A. Novel endogenous peptide agonists of cannabinoid receptors. FASEB J. 23, 3020-3029 (2009). www.fasebj.org
Resumo:
Background Epidemiological and experimental data suggest that bacteria] lipopolysaccharides (LPS) can either protect from or exacerbate allergic asthma. Lipopolysaccharides trigger immune responses through toll-like receptor 4 (TLR4) that in turn activates two major signalling pathways via either MyD88 or TRIF adaptor proteins. The LPS is a pro-Type 1 T helper cells (Th 1) adjuvant while aluminium hydroxide (alum) is a strong Type 2 T helper cells (Th2) adjuvant, but the effect of the mixing of both adjuvants on the development of lung allergy has not been investigated. Objective We determined whether natural (LPS) or synthetic (ER-803022) TLR4 agonists adsorbed onto alum adjuvant affect allergen sensitization and development of airway allergic disease. To dissect LPS-induced molecular pathways, we used TLR4-, MyD88-, TRIF-, or IL-12/IFN-gamma-deficient mice. Methods Mice were sensitized with subcutaneous injections of ovalbumin (OVA) with or without TLR4 agonists co-adsorbed onto alum and challenged with intranasally with OVA. The development of allergic lung disease was evaluated 24 h after last OVA challenge. Results Sensitization with OVA plus LPS co-adsorbed onto alum impaired in dose-dependent manner OVA-induced Th2-mediated allergic responses such as airway eosinophilia, type-2 cytokines secretion, airway hyper-reactivity, mucus hyper production and serum levels of IgE or IgG1 anaphylactic antibodies. Although the levels of IgG2a, Th1 -affiliated isotype increased, investigation into the lung-specific effects revealed that LPS did not induce a Th1 pattern of inflammation. Lipopolysaccharides impaired the development of Th2 immunity, signaling via TLR4 and MyD88 molecules and via the IL-12/IFN-gamma axis, but not through TRIF pathway. Moreover, the synthetic TLR4 agonists that proved to have a less systemic inflammatory response than LPS also protected against allergic asthma development. Conclusion Toll-like receptor 4 agonists co-adsorbed with allergen onto alum down-modulate allergic lung disease and prevent the development of polarized T cell-mediated airway inflammation.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Purpose: the objective of the present investigation was to determine implantation and pregnancy rates in patients undergoing ICSI and treated with beta(2)-adrenergic agonists, considering the uterine-relaxing action of these agents.Methods: A total of 225 women undergoing ICSI at the Center for Human Reproduction, Sinha Junqueira Maternity Foundation, entered the study. Patient participation in each group was random, by drawing lots, using a randomization table previously elaborated for the study (2:2:1). The group I (90 women) received 10 mg of terbutaline daily for 15 days starting on the day of oocyte retrieval; group II (90 women) received 20 mg of ritodrine daily during the same period of time as group I; group III (45 patients) received no treatment and was used as control. The evaluation was interrupted in 3 patients of group I and in 30 patients of group II because of a high incidence of side effects.Results: Pregnancy, implantation, and miscarriage rates were not significantly different (p>0.05) between the three groups: 29.88%, 13.25%, and 26.9% for group I; 33.33%, 17.5%, and 10.0% for group II; 28.88%, 15.07%, and 15.38% for group III, respectively.Conclusions: the results of this study do not support the routine use of beta(2)-adrenergic agonists during the peri-implantation period in assisted reproductive technology cycles.
Resumo:
Infertility represents one of the main long-term consequences of the chemotherapy used for the adjuvant treatment of breast cancer. Approximately 60-65% of breast cancers express the nuclear hormone receptor in premenopausal women. Adjuvant endocrine therapy is an integral component of care for patients with hormone receptor-positive (HR+) tumours. The GnRH agonist (GnRHa) alone or in combination with tamoxifen produces results at least similar to those obtained with the different chemotherapy protocols in patients with HR+ breast cancer with respect to recurrence-free survival and overall survival. It is time to indicate adjuvant therapy with GnRHa associated with tamoxifen for patients with breast cancer (HR+ tumours) if they want to preserve their reproductive function. The evaluation of ovarian reserve tests: follicle stimulating hormone (FSH), anti-Mullerian hormone (AMH), inhibin B, antral follicle count (AFC) and ovarian volume 6 months, and 1 year after the end of therapy with GnRHa/tamoxifen must be realised. The recurrence-free survival and overall survival should be analysed. The major implication of this hypothesis will be to avoid adjuvant chemotherapy for patients with breast cancer (HR+ tumours) that request fertility preservation. It is expected that ovarian function should not be altered in almost all cases and subsequent pregnancy a real possibility. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
We evaluated the potency of isoproterenol, carbachol, pilocarpine and calcitonin gene-related peptide (CGRP) in the rat right atria at 30, 60 and 90 days after neonatal capsaicin treatment. Neonatal rats were pretreated on the second day of life with capsaicin (50 mg/kg). The capsaicin pretreatment caused a five-fold rightward shift at the pEC(50) level on the concentration-response curves to isoproterenol in 30-day-old rats. Propranolol (10 mg/kg, given 15 min prior to capsaicin treatment) prevented this subsensitivity. No changes in the potency of isoproterenol were observed at 60 and 90 days after capsaicin pretreatment. The potency and maximal responses of CGRP in the right atria in 30-day-old rats were significantly higher than in 60- and 90-day-old rats; however, no differences were found between control and capsaicin groups. The potency and maximal responses to carbachol and pilocarpine were not changed in all groups. The neonatal capsaicin treatment reduced by about 74% the CGRP content in the heart in all groups. In summary, capsaicin treatment in newborn rats produces a desensitization of chronotropic response mediated by beta-adrenoceptors in isolated right atria from 30-day-old rats possibly due to a massive release of catecholamines. (C) 2002 Elsevier B.V. Ireland Ltd. All rights reserved.
Resumo:
1. The role of beta(2)-agonist and of cAMP in chick skeletal muscle proteolytic pathways and protein synthesis was investigated using an in vitro preparation that maintains tissue glycogen stores and metabolic activity for several hours.2. In extensor digitorum longus (EDL) muscle total proteolysis decreased by 15 to 20% in the presence of equimolar concentrations of epinephrine, clenbuterol, a selective beta(2)-agonist, or dibutyryl-cAMP. Rates of protein synthesis were not altered by clenbuterol or dibutyryl-cAMP.3. The decrease in the rate of total protein degradation induced by 10(-5) M clenbuterol was paralleled by a 44% reduction in Ca2+-dependent proteolysis, which was prevented by 10(-5) M ICI 118.551, a selective beta(2)-antagonist.4. No change was observed in the activity of the lysosomal, ATP-dependent, and ATP-independent proteolytic systems. Ca2+-dependent proteolytic activity was also reduced by 58% in the presence of 10(-4) M dibutyryl-cAMP or isobutylmethylxanthine.5. The data suggest that catecholamines exert an inhibitory control of Ca2+-dependent proteolysis in chick skeletal muscle, probably mediated by beta(2)-adrenoceptors, with the participation of a cAMP-dependent pathway.