937 resultados para Distributed data
Resumo:
The present paper is devoted to creation of cryptographic data security and realization of the packet mode in the distributed information measurement and control system that implements methods of optical spectroscopy for plasma physics research and atomic collisions. This system gives a remote access to information and instrument resources within the Intranet/Internet networks. The system provides remote access to information and hardware resources for the natural sciences within the Intranet/Internet networks. The access to physical equipment is realized through the standard interface servers (PXI, CАМАC, and GPIB), the server providing access to Ethernet devices, and the communication server, which integrates the equipment servers into a uniform information system. The system is used to make research task in optical spectroscopy, as well as to support the process of education at the Department of Physics and Engineering of Petrozavodsk State University.
Resumo:
In this paper we evaluate and compare two representativeand popular distributed processing engines for large scalebig data analytics, Spark and graph based engine GraphLab. Wedesign a benchmark suite including representative algorithmsand datasets to compare the performances of the computingengines, from performance aspects of running time, memory andCPU usage, network and I/O overhead. The benchmark suite istested on both local computer cluster and virtual machines oncloud. By varying the number of computers and memory weexamine the scalability of the computing engines with increasingcomputing resources (such as CPU and memory). We also runcross-evaluation of generic and graph based analytic algorithmsover graph processing and generic platforms to identify thepotential performance degradation if only one processing engineis available. It is observed that both computing engines showgood scalability with increase of computing resources. WhileGraphLab largely outperforms Spark for graph algorithms, ithas close running time performance as Spark for non-graphalgorithms. Additionally the running time with Spark for graphalgorithms over cloud virtual machines is observed to increaseby almost 100% compared to over local computer clusters.
Resumo:
The research presented in this dissertation is comprised of several parts which jointly attain the goal of Semantic Distributed Database Management with Applications to Internet Dissemination of Environmental Data. ^ Part of the research into more effective and efficient data management has been pursued through enhancements to the Semantic Binary Object-Oriented database (Sem-ODB) such as more effective load balancing techniques for the database engine, and the use of Sem-ODB as a tool for integrating structured and unstructured heterogeneous data sources. Another part of the research in data management has pursued methods for optimizing queries in distributed databases through the intelligent use of network bandwidth; this has applications in networks that provide varying levels of Quality of Service or throughput. ^ The application of the Semantic Binary database model as a tool for relational database modeling has also been pursued. This has resulted in database applications that are used by researchers at the Everglades National Park to store environmental data and to remotely-sensed imagery. ^ The areas of research described above have contributed to the creation TerraFly, which provides for the dissemination of geospatial data via the Internet. TerraFly research presented herein ranges from the development of TerraFly's back-end database and interfaces, through the features that are presented to the public (such as the ability to provide autopilot scripts and on-demand data about a point), to applications of TerraFly in the areas of hazard mitigation, recreation, and aviation. ^
Resumo:
Acknowledgements The authors would like to thank Jonathan Dick, Josie Geris, Jason Lessels, and Claire Tunaley for data collection and Audrey Innes for lab sample preparation. We also thank Christian Birkel for discussions about the model structure and comments on an earlier draft of the paper. Climatic data were provided by Iain Malcolm and Marine Scotland Fisheries at the Freshwater Lab, Pitlochry. Additional precipitation data were provided by the UK Meteorological Office and the British Atmospheric Data Centre (BADC).We thank the European Research Council ERC (project GA 335910 VEWA) for funding the VeWa project.
Resumo:
Peer reviewed
Resumo:
The mature larva and pupa of Fulgeochlizus bruchi (Candèze, 1896) are described and illustrated. Bioluminescent patterns are also given. Comments, new data on the first instar larva and natural history data are presented. The first instar larvae differ from the mature larvae mainly in their chaetotaxy, which is sparse and more symmetrically distributed.
Resumo:
Data mining is the process to identify valid, implicit, previously unknown, potentially useful and understandable information from large databases. It is an important step in the process of knowledge discovery in databases, (Olaru & Wehenkel, 1999). In a data mining process, input data can be structured, seme-structured, or unstructured. Data can be in text, categorical or numerical values. One of the important characteristics of data mining is its ability to deal data with large volume, distributed, time variant, noisy, and high dimensionality. A large number of data mining algorithms have been developed for different applications. For example, association rules mining can be useful for market basket problems, clustering algorithms can be used to discover trends in unsupervised learning problems, classification algorithms can be applied in decision-making problems, and sequential and time series mining algorithms can be used in predicting events, fault detection, and other supervised learning problems (Vapnik, 1999). Classification is among the most important tasks in the data mining, particularly for data mining applications into engineering fields. Together with regression, classification is mainly for predictive modelling. So far, there have been a number of classification algorithms in practice. According to (Sebastiani, 2002), the main classification algorithms can be categorized as: decision tree and rule based approach such as C4.5 (Quinlan, 1996); probability methods such as Bayesian classifier (Lewis, 1998); on-line methods such as Winnow (Littlestone, 1988) and CVFDT (Hulten 2001), neural networks methods (Rumelhart, Hinton & Wiliams, 1986); example-based methods such as k-nearest neighbors (Duda & Hart, 1973), and SVM (Cortes & Vapnik, 1995). Other important techniques for classification tasks include Associative Classification (Liu et al, 1998) and Ensemble Classification (Tumer, 1996).
Resumo:
There is no morphological synapomorphy for the disparate digeneans, the Fellodistomidae Nicoll, 1909. Although all known life-cycles of the group include bivalves as first intermediate hosts, there is no convincing morphological synapomorphy that can be used to unite the group. Sequences from the V4 region of small subunit (18S) rRNA genes were used to infer phylogenetic relationships among 13 species of Fellodistomidae from four subfamilies and eight species from seven other digenean families: Bivesiculidae; Brachylaimidae; Bucephalidae; Gorgoderidae; Gymnophallidae; Opecoelidae; and Zoogonidae. Outgroup comparison was made initially with an aspidogastrean. Various species from the other digenean families were used as outgroups in subsequent analyses. Three methods of analysis indicated polyphyly of the Fellodistomidae and at least two independent radiations of the subfamilies, such that they were more closely associated with other digeneans than to each other. The Tandanicolinae was monophyletic (100% bootstrap support) and was weakly associated with the Gymnophallidae (< 50-55% bootstrap support). Monophyly of the Baccigerinae was supported with 78-87% bootstrap support, and monophyly of the Zoogonidae + Baccigerinae received 77-86% support. The remaining fellodistomid species, Fellodistomum fellis, F. agnotum and Coomera brayi (Fellodistominae) plus Proctoeces maculatus and Complexobursa sp. (Proctoecinae), formed a separate clade with 74-92% bootstrap support. On the basis of molecular, morphological and life-cycle evidence, the subfamilies Baccigerinae and Tandanicolinae are removed from the Fellodistomidae and promoted to familial status. The Baccigerinae is promoted under the senior synonym Faustulidae Poche, 1926, and the Echinobrevicecinae Dronen, Blend & McEachran, 1994 is synonymised with the Faustulidae. Consequently, species that were formerly in the Fellodistomidae are now distributed in three families: Fellodistomidae; Faustulidae (syn. Baccigerinae Yamaguti, 1954); and Tandanicolidae Johnston, 1927. We infer that the use of bivalves as intermediate hosts by this broad range of families indicates multiple host-switching events within the radiation of the Digenea.
Resumo:
Fernando L. Mantelatto, Leonardo G. Pileggi, Ivana Miranda, and Ingo S. Wehrtmann (2011) Does Petrolisthes armatus (Anomura, Porcellanidae) form a species complex or are we dealing with just one widely distributed species? Zoological Studies 50(3): 372-384. Petrolisthes armatus has the widest distribution known among members of the family Porcellanidae and is one of the most ubiquitous and locally abundant intertidal decapods along the Atlantic coast of the Americas. Considering its geographical distribution and morphological plasticity, several authors postulated the existence of a P. armatus species complex. In the present study we used genetic data from the mitochondrial 16S ribosomal gene to determine the genetic variability of P. armatus from selected locations within its eastern tropical Pacific and western Atlantic distributions. Our phylogenic analysis included 49 specimens represented by 26 species of the genus Petrolisthes and 16 specimens from 10 species and 4 related genera. Genetic distances estimated among the analyzed Petrolisthes species ranged from 2.6%-22.0%; varied between 0%-5.7% for 16S. Additionally, the revision of P. armatus specimens from Pacific Costa Rica and Brazilian Waters showed no geographically significant morphological variations among the analyzed specimens. Therefore, our morphological and genetic data do not support the hypothesis of a P. armatus complex within the specimens studied herein from the Americas, but convincingly confirm the monophyly and non-separateness of the members assigned as P. armatus. http://zoolstud.sinica.edu.tw/Journals/50.3/372.pdf
Resumo:
Objectives: This study examines human scalp electroencephalographic (EEG) data for evidence of non-linear interdependence between posterior channels. The spectral and phase properties of those epochs of EEG exhibiting non-linear interdependence are studied. Methods: Scalp EEG data was collected from 40 healthy subjects. A technique for the detection of non-linear interdependence was applied to 2.048 s segments of posterior bipolar electrode data. Amplitude-adjusted phase-randomized surrogate data was used to statistically determine which EEG epochs exhibited non-linear interdependence. Results: Statistically significant evidence of non-linear interactions were evident in 2.9% (eyes open) to 4.8% (eyes closed) of the epochs. In the eyes-open recordings, these epochs exhibited a peak in the spectral and cross-spectral density functions at about 10 Hz. Two types of EEG epochs are evident in the eyes-closed recordings; one type exhibits a peak in the spectral density and cross-spectrum at 8 Hz. The other type has increased spectral and cross-spectral power across faster frequencies. Epochs identified as exhibiting non-linear interdependence display a tendency towards phase interdependencies across and between a broad range of frequencies. Conclusions: Non-linear interdependence is detectable in a small number of multichannel EEG epochs, and makes a contribution to the alpha rhythm. Non-linear interdependence produces spatially distributed activity that exhibits phase synchronization between oscillations present at different frequencies. The possible physiological significance of these findings are discussed with reference to the dynamical properties of neural systems and the role of synchronous activity in the neocortex. (C) 2002 Elsevier Science Ireland Ltd. All rights reserved.
Resumo:
The success of dental implant-supported prosthesis is directly linked to the accuracy obtained during implant’s pose estimation (position and orientation). Although traditional impression techniques and recent digital acquisition methods are acceptably accurate, a simultaneously fast, accurate and operator-independent methodology is still lacking. Hereto, an image-based framework is proposed to estimate the patient-specific implant’s pose using cone-beam computed tomography (CBCT) and prior knowledge of implanted model. The pose estimation is accomplished in a threestep approach: (1) a region-of-interest is extracted from the CBCT data using 2 operator-defined points at the implant’s main axis; (2) a simulated CBCT volume of the known implanted model is generated through Feldkamp-Davis-Kress reconstruction and coarsely aligned to the defined axis; and (3) a voxel-based rigid registration is performed to optimally align both patient and simulated CBCT data, extracting the implant’s pose from the optimal transformation. Three experiments were performed to evaluate the framework: (1) an in silico study using 48 implants distributed through 12 tridimensional synthetic mandibular models; (2) an in vitro study using an artificial mandible with 2 dental implants acquired with an i-CAT system; and (3) two clinical case studies. The results shown positional errors of 67±34μm and 108μm, and angular misfits of 0.15±0.08º and 1.4º, for experiment 1 and 2, respectively. Moreover, in experiment 3, visual assessment of clinical data results shown a coherent alignment of the reference implant. Overall, a novel image-based framework for implants’ pose estimation from CBCT data was proposed, showing accurate results in agreement with dental prosthesis modelling requirements.
Resumo:
Motion compensated frame interpolation (MCFI) is one of the most efficient solutions to generate side information (SI) in the context of distributed video coding. However, it creates SI with rather significant motion compensated errors for some frame regions while rather small for some other regions depending on the video content. In this paper, a low complexity Infra mode selection algorithm is proposed to select the most 'critical' blocks in the WZ frame and help the decoder with some reliable data for those blocks. For each block, the novel coding mode selection algorithm estimates the encoding rate for the Intra based and WZ coding modes and determines the best coding mode while maintaining a low encoder complexity. The proposed solution is evaluated in terms of rate-distortion performance with improvements up to 1.2 dB regarding a WZ coding mode only solution.
Resumo:
Although stock prices fluctuate, the variations are relatively small and are frequently assumed to be normal distributed on a large time scale. But sometimes these fluctuations can become determinant, especially when unforeseen large drops in asset prices are observed that could result in huge losses or even in market crashes. The evidence shows that these events happen far more often than would be expected under the generalized assumption of normal distributed financial returns. Thus it is crucial to properly model the distribution tails so as to be able to predict the frequency and magnitude of extreme stock price returns. In this paper we follow the approach suggested by McNeil and Frey (2000) and combine the GARCH-type models with the Extreme Value Theory (EVT) to estimate the tails of three financial index returns DJI,FTSE 100 and NIKKEI 225 representing three important financial areas in the world. Our results indicate that EVT-based conditional quantile estimates are much more accurate than those from conventional AR-GARCH models assuming normal or Student’s t-distribution innovations when doing out-of-sample estimation (within the insample estimation, this is so for the right tail of the distribution of returns).
Resumo:
The introduction of Electric Vehicles (EVs) together with the implementation of smart grids will raise new challenges to power system operators. This paper proposes a demand response program for electric vehicle users which provides the network operator with another useful resource that consists in reducing vehicles charging necessities. This demand response program enables vehicle users to get some profit by agreeing to reduce their travel necessities and minimum battery level requirements on a given period. To support network operator actions, the amount of demand response usage can be estimated using data mining techniques applied to a database containing a large set of operation scenarios. The paper includes a case study based on simulated operation scenarios that consider different operation conditions, e.g. available renewable generation, and considering a diversity of distributed resources and electric vehicles with vehicle-to-grid capacity and demand response capacity in a 33 bus distribution network.
Resumo:
Sustainable development concerns are being addressed with increasing attention, in general, and in the scope of power industry, in particular. The use of distributed generation (DG), mainly based on renewable sources, has been seen as an interesting approach to this problem. However, the increasing of DG in power systems raises some complex technical and economic issues. This paper presents ViProd, a simulation tool that allows modeling and simulating DG operation and participation in electricity markets. This paper mainly focuses on the operation of Virtual Power Producers (VPP) which are producers’ aggregations, being these producers mainly of DG type. The paper presents several reserve management strategies implemented in the scope of ViProd and the results of a case study, based on real data.