962 resultados para Discrete boundary value problems


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We introduce and analyze hp-version discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary-value problems in three-dimensional polyhedral domains. To resolve possible corner-, edge- and corner-edge singularities, we consider hexahedral meshes that are geometrically and anisotropically refined toward the corresponding neighborhoods. Similarly, the local polynomial degrees are increased linearly and possibly anisotropically away from singularities. We design interior penalty hp-dG methods and prove that they are well-defined for problems with singular solutions and stable under the proposed hp-refinements. We establish (abstract) error bounds that will allow us to prove exponential rates of convergence in the second part of this work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this paper is to establish exponential convergence of $hp$-version interior penalty (IP) discontinuous Galerkin (dG) finite element methods for the numerical approximation of linear second-order elliptic boundary-value problems with homogeneous Dirichlet boundary conditions and piecewise analytic data in three-dimensional polyhedral domains. More precisely, we shall analyze the convergence of the $hp$-IP dG methods considered in [D. Schötzau, C. Schwab, T. P. Wihler, SIAM J. Numer. Anal., 51 (2013), pp. 1610--1633] based on axiparallel $\sigma$-geometric anisotropic meshes and $\bm{s}$-linear anisotropic polynomial degree distributions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Given a short-arc optical observation with estimated angle-rates, the admissible region is a compact region in the range / range-rate space defined such that all likely and relevant orbits are contained within it. An alternative boundary value problem formulation has recently been proposed where range / range hypotheses are generated with two angle measurements from two tracks as input. In this paper, angle-rate information is reintroduced as a means to eliminate hypotheses by bounding their constants of motion before a more computationally costly Lambert solver or differential correction algorithm is run.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using the 3-D equations of linear elasticity and the asylllptotic expansion methods in terms of powers of the beam cross-section area as small parameter different beam theories can be obtained, according to the last term kept in the expansion. If it is used only the first two terms of the asymptotic expansion the classical beam theories can be recovered without resort to any "a priori" additional hypotheses. Moreover, some small corrections and extensions of the classical beam theories can be found and also there exists the possibility to use the asymptotic general beam theory as a basis procedure for a straightforward derivation of the stiffness matrix and the equivalent nodal forces of the beam. In order to obtain the above results a set of functions and constants only dependent on the cross-section of the beam it has to be computed them as solutions of different 2-D laplacian boundary value problems over the beam cross section domain. In this paper two main numerical procedures to solve these boundary value pf'oblems have been discussed, namely the Boundary Element Method (BEM) and the Finite Element Method (FEM). Results for some regular and geometrically simple cross-sections are presented and compared with ones computed analytically. Extensions to other arbitrary cross-sections are illustrated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"UILU-ENG 79-1708."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"Contract AF33(616)-6079 Project No. 9-(13-6278), Task No. 40572. Sponsored by: Aeronautical Systems Division"

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At head of title: COO-415-1012.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

"This work was supported in part by the Department of Computer Science, University of Illinois, Urbana, Illinois, and in part by the Advanced Research Projects Agency as administered by the Rome Air Development Center under contract no. US AF 30(602)4144."

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we are concerned with determining values of lambda, for which there exist positive solutions of the nonlinear eigenvalue problem [GRAPHICS] where a, b, c, d is an element of [0, infinity), xi(i) is an element of (0, 1), alpha(i), beta(i) is an element of [0 infinity) (for i is an element of {1, ..., m - 2}) are given constants, p, q is an element of C ([0, 1], (0, infinity)), h is an element of C ([0, 1], [0, infinity)), and f is an element of C ([0, infinity), [0, infinity)) satisfying some suitable conditions. Our proofs are based on Guo-Krasnoselskii fixed point theorem. (C) 2004 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the Cauchy problem for the Laplace equation in a quadrant (quarter-plane) containing a bounded inclusion. Given the values of the solution and its derivative on the edges of the quadrant the solution is reconstructed on the boundary of the inclusion. This is achieved using an alternating iterative method where at each iteration step mixed boundary value problems are being solved. A numerical method is also proposed and investigated for the direct mixed problems reducing these to integral equations over the inclusion. Numerical examples verify the efficiency of the proposed scheme.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A Cauchy problem for general elliptic second-order linear partial differential equations in which the Dirichlet data in H½(?1 ? ?3) is assumed available on a larger part of the boundary ? of the bounded domain O than the boundary portion ?1 on which the Neumann data is prescribed, is investigated using a conjugate gradient method. We obtain an approximation to the solution of the Cauchy problem by minimizing a certain discrete functional and interpolating using the finite diference or boundary element method. The minimization involves solving equations obtained by discretising mixed boundary value problems for the same operator and its adjoint. It is proved that the solution of the discretised optimization problem converges to the continuous one, as the mesh size tends to zero. Numerical results are presented and discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a Cauchy problem for the Laplace equation in a two-dimensional semi-infinite region with a bounded inclusion, i.e. the region is the intersection between a half-plane and the exterior of a bounded closed curve contained in the half-plane. The Cauchy data are given on the unbounded part of the boundary of the region and the aim is to construct the solution on the boundary of the inclusion. In 1989, Kozlov and Maz'ya [10] proposed an alternating iterative method for solving Cauchy problems for general strongly elliptic and formally self-adjoint systems in bounded domains. We extend their approach to our setting and in each iteration step mixed boundary value problems for the Laplace equation in the semi-infinite region are solved. Well-posedness of these mixed problems are investigated and convergence of the alternating procedure is examined. For the numerical implementation an efficient boundary integral equation method is proposed, based on the indirect variant of the boundary integral equation approach. The mixed problems are reduced to integral equations over the (bounded) boundary of the inclusion. Numerical examples are included showing the feasibility of the proposed method.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An iterative procedure for determining temperature fields from Cauchy data given on a part of the boundary is presented. At each iteration step, a series of mixed well-posed boundary value problems are solved for the heat operator and its adjoint. A convergence proof of this method in a weighted L2-space is included, as well as a stopping criteria for the case of noisy data. Moreover, a solvability result in a weighted Sobolev space for a parabolic initial boundary value problem of second order with mixed boundary conditions is presented. Regularity of the solution is proved. (© 2007 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

* Partially supported by CNPq (Brazil)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

MSC 2010: 34A37, 34B15, 26A33, 34C25, 34K37