991 resultados para Dilute bosonic atoms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This thesis reports on the optical properties of the dilute magnetic semiconductors, Sb1.97 V 0.03 Te3 and Sb1.94Cr0.06Te3, along with the parent compound Sb2Te3' These materials develop a ferromagnetic state at low temperature with Curie temperatures of 22 K and 16 K respectively. All three samples were oriented such that the electric field vector of the light was perpendicular to the c-axis. The reflectance profile of these samples in the mid-infrared (500 to 3000 cm-1) shows a pronounced plasma edge which retracts with decreasing temperature. The far-infrared region of these samples exhibits a phonon at ~ 60 cm-1 which softens as temperature decreases. Kramers-Kronig analysis and a Drude-Lorentz model were employed to determine the optical constants of the bulk samples. The real part of the optical conductivity is shown to consist of intraband contributions at frequencies below the energy gap (~0.26 eV) and interband contributions at frequencies above the energy gap. The temperature dependence of the scattering rate show that a mix of phonon and impurity scattering are present, while the signature of traditional spin disorder (magnetic) scattering was difficult to confirm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present a novel approach to computing the orientation moments and rheological properties of a dilute suspension of spheroids in a simple shear flow at arbitrary Peclct number based on a generalised Langevin equation method. This method differs from the diffusion equation method which is commonly used to model similar systems in that the actual equations of motion for the orientations of the individual particles are used in the computations, instead of a solution of the diffusion equation of the system. It also differs from the method of 'Brownian dynamics simulations' in that the equations used for the simulations are deterministic differential equations even in the presence of noise, and not stochastic differential equations as in Brownian dynamics simulations. One advantage of the present approach over the Fokker-Planck equation formalism is that it employs a common strategy that can be applied across a wide range of shear and diffusion parameters. Also, since deterministic differential equations are easier to simulate than stochastic differential equations, the Langevin equation method presented in this work is more efficient and less computationally intensive than Brownian dynamics simulations.We derive the Langevin equations governing the orientations of the particles in the suspension and evolve a procedure for obtaining the equation of motion for any orientation moment. A computational technique is described for simulating the orientation moments dynamically from a set of time-averaged Langevin equations, which can be used to obtain the moments when the governing equations are harder to solve analytically. The results obtained using this method are in good agreement with those available in the literature.The above computational method is also used to investigate the effect of rotational Brownian motion on the rheology of the suspension under the action of an external force field. The force field is assumed to be either constant or periodic. In the case of con- I stant external fields earlier results in the literature are reproduced, while for the case of periodic forcing certain parametric regimes corresponding to weak Brownian diffusion are identified where the rheological parameters evolve chaotically and settle onto a low dimensional attractor. The response of the system to variations in the magnitude and orientation of the force field and strength of diffusion is also analyzed through numerical experiments. It is also demonstrated that the aperiodic behaviour exhibited by the system could not have been picked up by the diffusion equation approach as presently used in the literature.The main contributions of this work include the preparation of the basic framework for applying the Langevin method to standard flow problems, quantification of rotary Brownian effects by using the new method, the paired-moment scheme for computing the moments and its use in solving an otherwise intractable problem especially in the limit of small Brownian motion where the problem becomes singular, and a demonstration of how systems governed by a Fokker-Planck equation can be explored for possible chaotic behaviour.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron-phonon interaction is considered within the framework of the fluctuating valence of Cu atoms. Anderson's lattice Hamiltonian is suitably modified to take this into account. Using Green's function technique tbe possible quasiparticle excitations' are determined. The quantity 2delta k(O)/ kB Tc is calculated for Tc= 40 K. The calculated values are in good agreement with the experimental results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The optical-absorption spectrum of a cationic Ag0 atom in a KCl crystal has been studied theoretically by means of a series of cluster models of increasing size. Excitation energies have been determined by means of a multiconfigurational self-consistent field procedure followed by a second-order perturbation correlation treatment. Moreover results obtained within the density-functional framework are also reported. The calculations confirm the assignment of bands I and IV to transitions of the Ag-5s electron into delocalized states with mainly K-4s,4p character. Bands II and III have been assigned to internal transitions on the Ag atom, which correspond to the atomic Ag-4d to Ag-5s transition. We also determine the lowest charge transfer (CT) excitation energy and confirm the assignment of band VI to such a transition. The study of the variation of the CT excitation energy with the Ag-Cl distance R gives additional support to a large displacement of the Cl ions due to the presence of the Ag0 impurity. Moreover, from the present results, it is predicted that on passing to NaCl:Ag0 the CT onset would be out of the optical range while the 5s-5p transition would undergo a redshift of 0.3 eV. These conclusions, which underline the different character of involved orbitals, are consistent with experimental findings. The existence of a CT transition in the optical range for an atom inside an ionic host is explained by a simple model, which also accounts for the differences with the more common 3d systems. The present study sheds also some light on the R dependence of the s2-sp transitions due to s2 ions like Tl+.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present study described about the interaction of a two level atom and squeezed field with time varying frequency. By applying a sinusoidal variation in the frequency of the field, the randomness in population inversion is reduced and the collapses and periodic revivals are regained. Quantum optics is an emerging field in physics which mainly deals with the interaction of atoms with quantised electromagnetic fields. Jaynes-Cummings Model (JCM) is a key model among them, which describes the interaction between a two level atom and a single mode radiation field. Here the study begins with a brief history of light, atom and their interactions. Also discussed the interaction between atoms and electromagnetic fields. The study suggest a method to manipulate the population inversion due to interaction and control the randomness in it, by applying a time dependence on the frequency of the interacting squeezed field.The change in behaviour of the population inversion due to the presence of a phase factor in the applied frequency variation is explained here.This study also describes the interaction between two level atom and electromagnetic field in nonlinear Kerr medium. It deals with atomic and field state evolution in a coupled cavity system. Our results suggest a new method to control and manipulate the population of states in two level atom radiation interaction,which is very essential for quantum information processing.We have also studied the variation of atomic population inversion with time, when a two level atom interacts with light field, where the light field has a sinusoidal frequency variation with a constant phase. In both coherent field and squeezed field cases, the population inversion variation is completely different from the phase zero frequency modulation case. It is observed that in the presence of a non zero phase φ, the population inversion oscillates sinusoidally.Also the collapses and revivals gradually disappears when φ increases from 0 to π/2. When φ = π/2 the evolution of population inversion is identical to the case when a two level atom interacts with a Fock state. Thus, by applying a phase shifted frequency modulation one can induce sinusoidal oscillations of atomic inversion in linear medium, those normally observed in Kerr medium. We noticed that the entanglement between the atom and field can be controlled by varying the period of the field frequency fluctuations. The system has been solved numerically and the behaviour of it for different initial conditions and different susceptibility values are analysed. It is observed that, for weak cavity coupling the effect of susceptibility is minimal. In cases of strong cavity coupling, susceptibility factor modifies the nature in which the probability oscillates with time. Effect of susceptibility on probability of states is closely related to the initial state of the system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Die relativistische Multikonfigurations Dirac-Fock (MCDF) Methode ist gegenwärtig eines der am häufigsten benutzten Verfahren zur Berechnung der elektronischen Struktur und der Eigenschaften freier Atome. In diesem Verfahren werden die Wellenfunktionen ausgewählter atomarer Zustände als eine Linearkombination von sogenannten Konfigurationszuständen (CSF - Configuration State Functions) konstruiert, die in einem Teilraum des N-Elektronen Hilbert-Raumes eine (Vielteilchen-)Basis aufspannen. Die konkrete Konstruktion dieser Basis entscheidet letzlich über die Güte der Wellenfunktionen, die üblicherweise mit Hilfe einer Variation des Erwartungswertes zum no-pair Dirac-Coulomb Hamiltonoperators gewonnen werden. Mit Hilfe von MCDF Wellenfunktionen können die dominanten relativistischen und Korrelationseffekte in freien Atomen allgemein recht gut erfaßt und verstanden werden. Außer der instantanen Coulombabstoßung zwischen allen Elektronenpaaren werden dabei auch die relativistischen Korrekturen zur Elektron-Elektron Wechselwirkung, d.h. die magnetischen und Retardierungsbeiträge in der Wechselwirkung der Elektronen untereinander, die Ankopplung der Elektronen an das Strahlungsfeld sowie der Einfluß eines ausgedehnten Kernmodells erfaßt. Im Vergleich mit früheren MCDF Rechnungen werden in den in dieser Arbeit diskutierten Fallstudien Wellenfunktionsentwicklungen verwendet, die um 1-2 Größenordnungen aufwendiger sind und daher systematische Untersuchungen inzwischen auch an Atomen mit offenen d- und f-Schalen erlauben. Eine spontane Emission oder Absorption von Photonen kann bei freien Atomen theoretisch am einfachsten mit Hilfe von Übergangswahrscheinlichkeiten erfaßt werden. Solche Daten werden heute in vielen Forschungsbereichen benötigt, wobei neben den traditionellen Gebieten der Fusionsforschung und Astrophysik zunehmend auch neue Forschungsrichtungen (z.B. Nanostrukturforschung und Röntgenlithographie) zunehmend ins Blickfeld rücken. Um die Zuverlässigkeit unserer theoretischen Vorhersagen zu erhöhen, wurde in dieser Arbeit insbesondere die Relaxation der gebundenen Elektronendichte, die rechentechnisch einen deutlich größeren Aufwand erfordert, detailliert untersucht. Eine Berücksichtigung dieser Relaxationseffekte führt oftmals auch zu einer deutlich besseren Übereinstimmung mit experimentellen Werten, insbesondere für dn=1 Übergänge sowie für schwache und Interkombinationslinien, die innerhalb einer Hauptschale (dn=0) vorkommen. Unsere in den vergangenen Jahren verbesserten Rechnungen zu den Wellenfunktionen und Übergangswahrscheinlichkeiten zeigen deutlich den Fortschritt bei der Behandlung komplexer Atome. Gleichzeitig kann dieses neue Herangehen künftig aber auch auf (i) kompliziertere Schalensstrukturen, (ii) die Untersuchung von Zwei-Elektronen-ein-Photon (TEOP) Übergängen sowie (iii) auf eine Reihe weiterer atomarer Eigenschaften übertragen werden, die bekanntermaßen empflindlich von der Relaxation der Elektronendichte abhängen. Dies sind bspw. Augerzerfälle, die atomare Photoionisation oder auch strahlende und dielektronische Rekombinationsprozesse, die theoretisch bisher nur selten überhaupt in der Dirac-Fock Näherung betrachtet wurden.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

X-ray transition energies for two-muonic atoms are calculated. The basis are relativistic self-consistent-field calculations including the corrections normally known in muonic atoms plus the vacuum polarization, magnetic interaction and retardation in the \mu-\mu-interaction, the specific mass correction and the configuration interaction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We investigate for very general cases the multiplet and fine structure splitting of muonelectron atoms arising from the coupling of the electron and muon angular momenta, including the effect of the Breit operator plus the electron state-dependent screening. Although many conditions have to be fulfilled simultaneously to observe these effeets, it should be possible to measure them in the 6h- 5g muonic transition in the Sn region.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Energies of electronic K X-rays in muonic atoms were calculated for muons in various outer orbitals and for different numbers of electrons. Energy shifts were obtained with respect to characteristic X-rays belonging to nuclear charge (Z - 1) and their possible observation is discussed. The shifts in muonic Sn as an example amount to 19, 37, and 59 eV for the muon in 5g, 6h, and 7i states respectively. However, shifts due to the number of electrons present and the electron vacancy distribution in the L-shell are significantly larger. Accurate measurements of the K X-ray energies would therefore enable us to learn more about the electronic structure during the muonic cascade.