973 resultados para Digby plays.
Resumo:
Aims: The renin-angiotensin system (RAS) plays a major role in cardiovascular diseases in postmenopausal women, but little is known about its importance to lower urinary tract symptoms. In this study we have used the model of ovariectomized (OVX) estrogen-deficient rats to investigate the role of RAS in functional and molecular alterations in the urethra and bladder. Main methods: Responses to contractile and relaxant agents in isolated urethra and bladder, as well as cystometry were evaluated in 4-month OVX Sprague-Dawley rats. Angiotensin-converting enzyme activity and Western blotting for AT1/AT2 receptors were examined. Key findings: Cystometric evaluations in OVX rats showed increases in basal pressure, capacity and micturition frequency, as well as decreased voiding pressure. Angiotensin II and phenylephrine produced greater urethral contractions in OVX compared with Sham group. Carbachol-induced bladder contractions were significantly reduced in OVX group. Relaxations of urethra and bladder to sodium nitroprusside and BAY 41-2272 were unaffected by OVX. Angiotensin-converting enzyme activity was 2.6-fold greater (p < 0.05) in urethral tissue of OVX group, whereas enzyme activity in plasma and bladder remained unchanged. Expressions of AT1 and AT2 receptors in the urethra were markedly higher in OVX group. In bladder, AT1 receptors were not detected, whereas AT2 receptor expression was unchanged between groups. 17β-Estradiol replacement (0.1 mg/kg, weekly) or losartan (30 mg/kg/day) largely attenuated most of the alterations seen in OVX group. Significance: Prolonged estrogen deprivation leads to voiding dysfunction and urethral hypercontractility that are associated with increased ACE activity and up-regulation of angiotensin AT1/AT2 receptor in the urethral tissue. © 2013 Elsevier Inc. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Background: T. cruzi strains have been divided into six discrete typing units (DTUs) according to their genetic background. These groups are designated T. cruzi I to VI. In this context, amastigotes from G strain (T. cruzi I) are highly infective in vitro and show no parasitemia in vivo. Here we aimed to understand why amastigotes from G strain are highly infective in vitro and do not contribute for a patent in vivo infection. Methodology/Principal Findings: Our in vitro studies demonstrated the first evidence that IFN-gamma would be associated to the low virulence of G strain in vivo. After intraperitoneal amastigotes inoculation in wild-type and knockout mice for TNF-alpha, Nod2, Myd88, iNOS, IL-12p40, IL-18, CD4, CD8 and IFN-gamma we found that the latter is crucial for controlling infection by G strain amastigotes. Conclusions/Significance: Our results showed that amastigotes from G strain are highly infective in vitro but did not contribute for a patent infection in vivo due to its susceptibility to IFN-gamma production by host immune cells. These data are useful to understand the mechanisms underlying the contrasting behavior of different T. cruzi groups for in vitro and in vivo infection.
Resumo:
Abstract Background Human Papillomavirus, HPV, is the main etiological factor for cervical cancer. Different studies show that in women infected with HPV there is a positive correlation between lesion grade and number of infiltrating macrophages, as well as with IL-10 higher expression. Using a HPV16 associated tumor model in mice, TC-1, our laboratory has demonstrated that tumor infiltrating macrophages are M2-like, induce T cell regulatory phenotype and play an important role in tumor growth. M2 macrophages secrete several cytokines, among them IL-10, which has been shown to play a role in T cell suppression by tumor macrophages in other tumor models. In this work, we sought to establish if IL-10 is part of the mechanism by which HPV tumor associated macrophages induce T cell regulatory phenotype, inhibiting anti-tumor activity and facilitating tumor growth. Results TC-1 tumor cells do not express or respond to IL-10, but recruit leukocytes which, within the tumor environment, produce this cytokine. Using IL-10 deficient mice or blocking IL-10 signaling with neutralizing antibodies, we observed a significant reduction in tumor growth, an increase in tumor infiltration by HPV16 E7 specific CD8 lymphocytes, including a population positive for Granzyme B and Perforin expression, and a decrease in the percentage of HPV specific regulatory T cells in the lymph nodes. Conclusions Our data shows that in the HPV16 TC-1 tumor mouse model, IL-10 produced by tumor macrophages induce regulatory phenotype on T cells, an immune escape mechanism that facilitates tumor growth. Our results point to a possible mechanism behind the epidemiologic data that correlates higher IL-10 expression with risk of cervical cancer development in HPV infected women.
Resumo:
Aims: The renin–angiotensin system (RAS) plays a major role in cardiovascular diseases in postmenopausal women, but little is known about its importance to lower urinary tract symptoms. In this study we have used the model of ovariectomized (OVX) estrogen-deficient rats to investigate the role of RAS in functional and molecular alterations in the urethra and bladder. Main methods: Responses to contractile and relaxant agents in isolated urethra and bladder, as well as cystometry were evaluated in 4-month OVX Sprague–Dawley rats. Angiotensin-converting enzyme activity and Western blotting for AT1/AT2 receptors were examined. Key findings: Cystometric evaluations in OVX rats showed increases in basal pressure, capacity and micturition frequency, as well as decreased voiding pressure. Angiotensin II and phenylephrine produced greater urethral contractions in OVX compared with Sham group. Carbachol-induced bladder contractions were significantly reduced in OVX group. Relaxations of urethra and bladder to sodium nitroprusside and BAY 41-2272 were unaffected by OVX. Angiotensin-converting enzyme activity was 2.6-fold greater (p < 0.05) in urethral tissue of OVX group,whereas enzyme activity in plasma and bladder remained unchanged. Expressions of AT1 and AT2 receptors in the urethra were markedly higher in OVX group. In bladder, AT1 receptors were not detected, whereas AT2 receptor expression was unchanged between groups. 17β-Estradiol replacement (0.1 mg/kg, weekly) or losartan (30 mg/kg/day) largely attenuated most of the alterations seen in OVX group. Significance: Prolonged estrogen deprivation leads to voiding dysfunction and urethral hypercontractility that are associated with increased ACE activity and up-regulation of angiotensin AT1/AT2 receptor in the urethral tissue.
Resumo:
The most consistent feature of Wiskott Aldrich syndrome (WAS) is profound thrombocytopenia with small platelets. The responsible gene encodes WAS protein (WASP), which functions in leucocytes as an actin filament nucleating agent -yet- actin filament nucleation proceeds normally in patient platelets regarding shape change, filopodia and lamellipodia generation. Because WASP localizes in the platelet membrane skeleton and is mobilized by alphaIIbbeta3 integrin outside-in signalling, we questioned whether its function might be linked to integrin. Agonist-induced alphaIIbbeta3 activation (PAC-1 binding) was normal for patient platelets, indicating normal integrin inside-out signalling. Inside-out signalling (fibrinogen, JON/A binding) was also normal for wasp-deficient murine platelets. However, adherence/spreading on immobilized fibrinogen was decreased for patient platelets and wasp-deficient murine platelets, indicating decreased integrin outside-in responses. Another integrin outside-in dependent response, fibrin clot retraction, involving contraction of the post-aggregation actin cytoskeleton, was also decreased for patient platelets and wasp-deficient murine platelets. Rebleeding from tail cuts was more frequent for wasp-deficient mice, suggesting decreased stabilisation of the primary platelet plug. In contrast, phosphatidylserine exposure, a pro-coagulant response, was enhanced for WASP-deficient patient and murine platelets. The collective results reveal a novel function for WASP in regulating pro-aggregatory and pro-coagulant responses downstream of integrin outside-in signalling.
Resumo:
The proapoptotic Bcl-2 homolog Bim was shown to control the apoptosis of both T cells and hepatocytes. This dual role of Bim might be particularly relevant for the development of viral hepatitis, in which both the sensitivity of hepatocytes to apoptosis stimuli and the persistence of cytotoxic T cells are essential factors for the outcome of the disease. The relevance of Bim in regulating survival of cytotoxic T cells or induction of hepatocyte death has only been investigated in separate systems, and their relative contributions to the pathogenesis of T cell-mediated hepatitis remain unclear. Using the highly dynamic model system of lymphocytic choriomeningitis virus-mediated hepatitis and bone marrow chimeras, we found that Bim has a dual role in the development of lymphocytic choriomeningitis virus-induced, T cell-mediated hepatitis. Although the absence of Bim in parenchymal cells led to markedly attenuated liver damage, loss of Bim in the lymphoid compartment moderately enhanced hepatitis. However, when both effects were combined in Bim(-/-) mice, the effect of Bim deficiency in the lymphoid compartment was overcompensated for by the reduced sensitivity of Bim(-/-) hepatocytes to T cell-induced apoptosis, resulting in the protection of Bim(-/-) mice from hepatitis.
Resumo:
Starch is the major source of food glucose and its digestion requires small intestinal alpha-glucosidic activities provided by the 2 soluble amylases and 4 enzymes bound to the mucosal surface of enterocytes. Two of these mucosal activities are associated with sucrase-isomaltase complex, while another 2 are named maltase-glucoamylase (Mgam) in mice. Because the role of Mgam in alpha-glucogenic digestion of starch is not well understood, the Mgam gene was ablated in mice to determine its role in the digestion of diets with a high content of normal corn starch (CS) and resulting glucose homeostasis. Four days of unrestricted ingestion of CS increased intestinal alpha-glucosidic activities in wild-type (WT) mice but did not affect the activities of Mgam-null mice. The blood glucose responses to CS ingestion did not differ between null and WT mice; however, insulinemic responses elicited in WT mice by CS consumption were undetectable in null mice. Studies of the metabolic route followed by glucose derived from intestinal digestion of (13)C-labeled and amylase-predigested algal starch performed by gastric infusion showed that, in null mice, the capacity for starch digestion and its contribution to blood glucose was reduced by 40% compared with WT mice. The reduced alpha-glucogenesis of null mice was most probably compensated for by increased hepatic gluconeogenesis, maintaining prandial glucose concentration and total flux at levels comparable to those of WT mice. In conclusion, mucosal alpha-glucogenic activity of Mgam plays a crucial role in the regulation of prandial glucose homeostasis.
Resumo:
Bicaudal-D (Bic-D), Egalitarian (Egl), microtubules and their motors form a transport machinery that localizes a remarkable diversity of mRNAs to specific cellular regions during oogenesis and embryogenesis. Bic-D family proteins also promote dynein-dependent transport of Golgi vesicles, lipid droplets, synaptic vesicles and nuclei. However, the transport of these different cargoes is still poorly understood. We searched for novel proteins that either mediate Bic-Ddependent transport processes or are transported by them. Clathrin heavy chain (Chc) co-immunopurifies with Bic-D in embryos and ovaries, and a fraction of Chc colocalizes with Bic-D. Both proteins control posterior patterning of the Drosophila oocyte and endocytosis. Although the role of Chc in endocytosis is well established, our results show that Bic-D is also needed for the elevated endocytic activity at the posterior of the oocyte. Apart fromaffecting endocytosis indirectly by its role in osk mRNA localization, Bic-D is also required to transport Chc mRNA into the oocyte and for transport and proper localization of Chc protein to the oocyte cortex, pointing to an additional,more direct role of Bic-D in the endocytic pathway. Furthermore, similar to Bic-D, Chc also contributes to proper localization of osk mRNA and to oocyte growth. However, in contrast to other endocytic components and factors of the endocytic recycling pathway, such as Rabenosyn-5 (Rbsn-5) and Rab11, Chc is needed during early stages of oogenesis (from stage 6 onwards) to localize oskmRNA correctly.Moreover,we also uncovered a novel, presumably endocytosis-independent, role of Chc in the establishment of microtubule polarity in stage 6 oocytes.
Resumo:
The U7 small nuclear ribonucleoprotein (U7 snRNP) is an essential factor mediating the unique 3’end processing of non-polyadenylated, replication-dependent histone mRNAs in metazoans. These histone genes expression and processing of their transcripts are cell cycle-regulated mechanisms that recruit a number of specific proteins as well as common factors required for expression and maturation of polyadenylated mRNAs. However, despite all the knowledge we have so far, there are still gaps in understanding of core histone RNA 3’ end processing, its coupling to transcription and regulation during cell cycle. To further elucidate this phenomena we used affinity chromatography based on tagged version of U7 snRNA molecule to identify proteins associated with U7 snRNP/U7 snRNA that could be potentially involved in core histone genes expression in human cells. Mass spectrometric analysis of affinity-purified fraction revealed, among others, multifunctional RNA/DNAbinding protein FUS/TLS (fused in sarcoma/translocated in liposarcoma) as a new factor interacting with U7 snRNA/RNP. Co-immunoprecipitation and RIP experiments confirmed the binding between FUS and the U7 RNA/snRNP. Interestingly, FUS:U7 snRNA interaction seems to be activated in S phase where the core histone genes are expressed. Moreover, FUS co-fractionates in 10-50% continuous glycerol gradient with other factors involved in histone premRNAs 3’end processing. However, this unique 3’end maturation was not disturbed upon FUS knockdown. Instead, we found that FUS depletion leads to a de-regulation of expression from selected histone promoters, suggesting that FUS is rather involved in regulation of core histone genes transcription. Thus, FUS bound to U7 snRNP can play a role in coupling between transcription and 3’end processing of replication dependant histone mRNAs.