997 resultados para Diffuse Ionized-gas


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Exhaust emissions from thirteen compressed natural gas (CNG) and nine ultralow sulphur diesel in-service transport buses were monitored on a chassis dynamometer. Measurements were carried out at idle and at three steady engine loads of 25%, 50% and 100% of maximum power at a fixed speed of 60 kmph. Emission factors were estimated for particle mass and number, carbon dioxide and oxides of nitrogen for two types of CNG buses (Scania and MAN, compatible with Euro 2 and 3 emission standards, respectively) and two types of diesel buses (Volvo Pre-Euro/Euro1 and Mercedez OC500 Euro3). All emission factors increased with load. The median particle mass emission factor for the CNG buses was less than 1% of that from the diesel buses at all loads. However, the particle number emission factors did not show a statistically significant difference between buses operating on the two types of fuel. In this paper, for the very first time, particle number emission factors are presented at four steady state engine loads for CNG buses. Median values ranged from the order of 1012 particles min-1 at idle to 1015 particles km-1 at full power. Most of the particles observed in the CNG emissions were in the nanoparticle size range and likely to be composed of volatile organic compounds The CO2 emission factors were about 20% to 30% greater for the diesel buses over the CNG buses, while the oxides of nitrogen emission factors did not show any difference due to the large variation between buses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A non-destructive, diffuse reflectance near infrared spectroscopy (DR-NIRS)approach is considered as a potential tool for determining the component-level structural properties of articular cartilage. To this end, DR-NIRS was applied in vitro to detect structural changes, using principal component analysis as the statistical basis for characterization. The results show that this technique, particularly with first-derivative pretreatment, can distinguish normal, intact cartilage from enzymatically digested cartilage. Further, this paper establishes that the use of DR-NIRS enables the probing of the full depth of the uncalcified cartilage matrix, potentially allowing the assessment of degenerative changes in joint tissue, independent of the site of initiation of the osteoarthritic process.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Tungsten trioxide is one of the potential semiconducting materials used for sensing NH3, CO, CH4 and acetaldehyde gases. The current research aims at development, microstructural characterization and gas sensing properties of thin films of Tungsten trioxide (WO3). In this paper, we intend to present the microstructural characterization of these films as a function of post annealing heat treatment. Microstructural and elemental analysis of electron beam evaporated WO3 thin films and iron doped WO3 films (WO3:Fe) have been carried out using analytical techniques such as Transmission electron microscopy, Rutherford Backscattered Spectroscopy and XPS analysis. TEM analysis revealed that annealing at 300oC for 1 hour improves cyrstallinity of WO3 film. Both WO3 and WO3:Fe films had uniform thickness and the values corresponded to those measured during deposition. RBS results show a fairly high concentration of oxygen at the film surface as well as in the bulk for both films, which might be due to adsorption of oxygen from atmosphere or lattice oxygen vacancy inherent in WO3 structure. XPS results indicate that tungsten exists in 4d electronic state on the surface but at a depth of 10 nm, both 4d and 4f electronic states were observed. Atomic force microscopy reveals nanosize particles and porous structure of the film. This study shows e-beam evaporation technique produces nanoaparticles and porous WO3 films suitable for gas sensing applications and doping with iron decreases the porosity and particle size which can help improve the gas selectivity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure and Iron incorporated nanostructured Tungsten Oxide (WO3) thin films were investigated for gas sensing applications using noise spectroscopy. The WO3 sensor was able to detect lower concentrations (1 ppm-10 ppm) of NH3, CO, CH4 and Acetaldehyde gases at higher operating temperatures between 100oC to 250oC. The response of the WO3 sensor to NH3, CH4 and Acetaldehyde at lower temperatures (50oC-100oC) was significant when the sensor was photo-activated using blue-light emitting diode (Blue-LED). The WO3 with Fe (WO3:Fe) was found to show some response to Acetaldehyde gas only at relatively higher operating temperature (250oC) and gas concentration of 10 ppm.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This correspondence presents a microphone array shape calibration procedure for diffuse noise environments. The procedure estimates intermicrophone distances by fitting the measured noise coherence with its theoretical model and then estimates the array geometry using classical multidimensional scaling. The technique is validated on noise recordings from two office environments.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure Tungsten Oxide (WO3) and Iron-doped (10 at%) Tungsten Oxide (WO3:Fe) nanostructured thin films were prepared using a dual crucible Electron Beam Evaporation techniques. The films were deposited at room temperature in high vacuum condition on glass substrate and post-heat treated at 300 oC for 1 hour. From the study of X-ray diffraction and Raman the characteristics of the as-deposited WO3 and WO3:Fe films indicated non-crystalline nature. The surface roughness of all the films showed in the order of 2.5 nm as observed using Atomic Force Microscopy (AFM). X-Ray Photoelectron Spectroscopy (XPS) analysis revealed tungsten oxide films with stoichiometry close to WO3. The addition of Fe to WO3 produced a smaller particle size and lower porosity as observed using Transmission Electron Microscopy (TEM). A slight difference in optical band gap energies of 3.22 eV and 3.12 eV were found between the as-deposited WO3 and WO3:Fe films, respectively. However, the difference in the band gap energies of the annealed films were significantly higher having values of 3.12 eV and 2.61 eV for the WO3 and WO3:Fe films, respectively. The heat treated samples were investigated for gas sensing applications using noise spectroscopy and doping of Fe to WO3 reduced the sensitivity to certain gasses. Detailed study of the WO3 and WO3:Fe films gas sensing properties is the subject of another paper.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Principal Topic: ''In less than ten years music labels will not exist anymore.'' Michael Smelli, former Global COO Sony/BMG MCA/QUT IMP Business Lab Digital Music Think Thanks 9 May 2009, Brisbane Big music labels such as EMI, Sony BMG and UMG have been responsible for promoting and producing a myriad of stars in the music industry over the last decades. However, the industry structure is under enormous threat with the emergence of a new innovative era of digital music. Recent years have seen a dramatic shift in industry power with the emergence of Napster and other file sharing sites, iTunes and other online stores, iPod and the MP3 revolution. Myspace.com and other social networking sites are connecting entrepreneurial artists with fans and creating online music communities independent of music labels. In 2008 the digital music business internationally grew by around 25% to 3.7 Billion US-Dollar. Digital platforms now account for around 20% of recorded music sales, up from 15 % in 2007 (IFPI Digital music report 2009). CD sales have fallen by 40% since their peak levels. Global digital music sales totalled an estimated US$ 3 Billion in 2007, an increase of 40% on 2006 figures. Digital sales account for an estimated 15% of global market, up from 11% in 2006 and zero in 2003. The music industry is more advanced in terms of digital revenues than any other creative or entertainment industry (except games). Its digital share is more than twice that of newspapers (7%), films (35) or books (2%). All these shifts present new possibilities for music entrepreneurs to act entrepreneurially and promote their music independently of the major music labels. Diffusion of innovations has a long tradition in both sociology (e.g. Rogers 1962, 2003) and marketing (Bass 1969, Mahajan et al., 1990). The context of the current project is theoretically interesting in two respects. First, the role of online social networks replaces traditional face-to-face word of mouth communications. Second, as music is a hedonistic product, this strongly influences the nature of interpersonal communications and their diffusion patterns. Both of these have received very little attention in the diffusion literature to date, and no studies have investigated the influence of both simultaneously. This research project is concerned with the role of social networks in this new music industry landscape, and how this may be leveraged by musicians willing to act entrepreneurially. Our key research question we intend to address is: How do online social network communities impact the nature, pattern and speed that music diffuses? Methodology/Key Propositions : We expect the nature/ character of diffusion of popular, generic music genres to be different from specialized, niche music. To date, only Moe & Fader (2002) and Lee et al. (2003) investigated diffusion patterns of music and these focus on forecast weekly sales of music CDs based on the advance purchase orders before the launch, rather than taking a detailed look at diffusion patterns. Consequently, our first research questions are concerned with understanding the nature of online communications within the context of diffusion of music and artists. Hence, we have the following research questions: RQ1: What is the nature of fan-to-fan ''word of mouth'' online communications for music? Do these vary by type of artist and genre of music? RQ2: What is the nature of artist-to-fan online communications for music? Do these vary by type of artist and genre of music? What types of communication are effective? Two outcomes from research social network theory are particularly relevant to understanding how music might diffuse through social networks. Weak tie theory (Granovetter, 1973), argues that casual or infrequent contacts within a social network (or weak ties) act as a link to unique information which is not normally contained within an entrepreneurs inner circle (or strong tie) social network. A related argument, structural hole theory (Burt, 1992), posits that it is the absence of direct links (or structural holes) between members of a social network which offers similar informational benefits. Although these two theories argue for the information benefits of casual linkages, and diversity within a social network, others acknowledge that a balanced network which consists of a mix of strong ties, weak ties is perhaps more important overall (Uzzi, 1996). It is anticipated that the network structure of the fan base for different types of artists and genres of music will vary considerably. This leads to our third research question: RQ3: How does the network structure of online social network communities impact the pattern and speed that music diffuses? The current paper is best described as theory elaboration. It will report the first exploratory phase designed to develop and elaborate relevant theory (the second phase will be a quantitative study of network structure and diffusion). We intend to develop specific research propositions or hypotheses from the above research questions. To do so we will conduct three focus group discussions of independent musicians and three focus group discussions of fans active in online music communication on social network sites. We will also conduct five case studies of bands that have successfully built fan bases through social networking sites (e.g. myspace.com, facebook.com). The idea is to identify which communication channels they employ and the characteristics of the fan interactions for different genres of music. We intend to conduct interviews with each of the artists and analyse their online interaction with their fans. Results and Implications : At the current stage, we have just begun to conduct focus group discussions. An analysis of the themes from these focus groups will enable us to further refine our research questions into testable hypotheses. Ultimately, our research will provide a better understanding of how social networks promote the diffusion of music, and how this varies for different genres of music. Hence, some music entrepreneurs will be able to promote their music more effectively. The results may be further generalised to other industries where online peer-to-peer communication is common, such as other forms of entertainment and consumer technologies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pure and Iron incorporated nanostructured Tungsten Oxide (WO3) thin films were investigated for gas sensing applications using noise spectroscopy. The WO3 sensor was able to detect lower concentrations (1 ppm-10 ppm) of NH3, CO, CH4 and Acetaldehyde gases at operating temperatures between 100 degrees celcius to 250 degrees celcius. The iron doped Tungsten Oxide sensor (WO3:Fe) showed some response to Acetaldehyde gas at relatively higher operating temperature (250 degrees celcius) and gas concentration of 10 ppm. The sensitivity of the WO3 sensor towards NH3, CH4 and Acetaldehyde at lower operating temperatures (50 degrees celcius - 100 degrees celcius) was significant when the sensor was photo-activated using blue-light emitting diode (Blue-LED). From the results, photo-activated WO3 thin film that operates at room temperature appeared to be a promising gas sensor. The overall results indicated that the WO3 sensor exhibited reproducibility for the detection of various gases and the WO3:Fe indicated some response towards Acetaldehyde gas.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Greenhouse gas markets, where invisible gases are traded, must seem like black boxes to most people. Farmers can make money on these markets, such as the Chicago Climate Exchange, by installing methane capture technologies in animal-based systems, no-till farming, establishing grasslands, and planting trees.