996 resultados para Differential fluoresence induction
Resumo:
Context. The turbulent pumping effect corresponds to the transport of magnetic flux due to the presence of density and turbulence gradients in convectively unstable layers. In the induction equation it appears as an advective term and for this reason it is expected to be important in the solar and stellar dynamo processes. Aims. We explore the effects of turbulent pumping in a flux-dominated Babcock-Leighton solar dynamo model with a solar-like rotation law. Methods. As a first step, only vertical pumping has been considered through the inclusion of a radial diamagnetic term in the induction equation. In the second step, a latitudinal pumping term was included and then, a near-surface shear was included. Results. The results reveal the importance of the pumping mechanism in solving current limitations in mean field dynamo modeling, such as the storage of the magnetic flux and the latitudinal distribution of the sunspots. If a meridional flow is assumed to be present only in the upper part of the convective zone, it is the full turbulent pumping that regulates both the period of the solar cycle and the latitudinal distribution of the sunspot activity. In models that consider shear near the surface, a second shell of toroidal field is generated above r = 0.95 R(circle dot) at all latitudes. If the full pumping is also included, the polar toroidal fields are efficiently advected inwards, and the toroidal magnetic activity survives only at the observed latitudes near the equator. With regard to the parity of the magnetic field, only models that combine turbulent pumping with near-surface shear always converge to the dipolar parity. Conclusions. This result suggests that, under the Babcock-Leighton approach, the equartorward motion of the observed magnetic activity is governed by the latitudinal pumping of the toroidal magnetic field rather than by a large scale coherent meridional flow. Our results support the idea that the parity problem is related to the quadrupolar imprint of the meridional flow on the poloidal component of the magnetic field and the turbulent pumping positively contributes to wash out this imprint.
Resumo:
Based on high-resolution spectra obtained with the MIKE spectrograph on the Magellan telescopes, we present detailed elemental abundances for 20 red giant stars in the outer Galactic disk, located at Galactocentric distances between 9 and 13 kpc. The outer disk sample is complemented with samples of red giants from the inner Galactic disk and the solar neighborhood, analyzed using identical methods. For Galactocentric distances beyond 10 kpc, we only find chemical patterns associated with the local thin disk, even for stars far above the Galactic plane. Our results show that the relative densities of the thick and thin disks are dramatically different from the solar neighborhood, and we therefore suggest that the radial scale length of the thick disk is much shorter than that of the thin disk. We make a first estimate of the thick disk scale length of L(thick) = 2.0 kpc, assuming L(thin) = 3.8 kpc for the thin disk. We suggest that radial migration may explain the lack of radial age, metallicity, and abundance gradients in the thick disk, possibly also explaining the link between the thick disk and the metal-poor bulge.
Resumo:
Background: The tubule-interstitial fibrosis is the hallmark of progressive renal disease and is strongly associated with inflammation of this compartment. Heme-oxygenase-1 (HO-1) is a cytoprotective molecule that has been shown to be beneficial in various models of renal injury. However, the role of HO-1 in reversing an established renal scar has not yet been addressed. Aim: We explored the ability of HO-1 to halt and reverse the establishment of fibrosis in an experimental model of chronic renal disease. Methods: Sprague-Dawley male rats were subjected to unilateral ureteral obstruction (UUO) and divided into two groups: non-treated and Hemin-treated. To study the prevention of fibrosis, animals were pre-treated with Hemin at days -2 and -1 prior to UUO. To investigate whether HO-1 could reverse established fibrosis, Hemin therapy was given at days 6 and 7 post-surgery. After 7 and/or 14 days, animals were sacrificed and blood, urine and kidney tissue samples were collected for analyses. Renal function was determined by assessing the serum creatinine, inulin clearance, proteinuria/creatininuria ratio and extent of albuminuria. Arterial blood pressure was measured and fibrosis was quantified by Picrosirius staining. Gene and protein expression of pro-inflammatory and pro-fibrotic molecules, as well as HO-1 were performed. Results: Pre-treatment with Hemin upregulated HO-1 expression and significantly reduced proteinuria, albuminuria, inflammation and pro-fibrotic protein and gene expressions in animals subjected to UUO. Interestingly, the delayed treatment with Hemin was also able to reduce renal dysfunction and to decrease the expression of pro-inflammatory molecules, all in association with significantly reduced levels of fibrosis-related molecules and collagen deposition. Finally, TGF-beta protein production was significantly lower in Hemin-treated animals. Conclusion: Treatment with Hemin was able both to prevent the progression of fibrosis and to reverse an established renal scar. Modulation of inflammation appears to be the major mechanism behind HO-1 cytoprotection.
Resumo:
The present study evaluated the effect of aflatoxin B(1) (AFB(1)) and fumonisin B(1) (FB(1)) either alone, or in association, on rat primary hepatocyte cultures. Cell viability was assessed by flow cytometry after propidium iodine intercalation. DNA fragmentation and apoptosis were assessed by agarose gel electrophoresis and acridine orange and ethidium bromide staining. At the concentrations of AFB(1) and FB(1) used, the toxins did not decrease cell viability, but did induce apoptosis in a concentration and time-dependent manner.
Resumo:
Background: Bovine anaplasmosis, caused by the rickettsial tick-borne pathogen Anaplasma marginale (Rickettsiales: Anaplasmataceae), is vectored by Rhipicephalus (Boophilus) microplus in many tropical and subtropical regions of the world. A. marginale undergoes a complex developmental cycle in ticks which results in infection of salivary glands from where the pathogen is transmitted to cattle. In previous studies, we reported modification of gene expression in Dermacentor variabilis and cultured Ixodes scapularis tick cells in response to infection with A. marginale. In these studies, we extended these findings by use of a functional genomics approach to identify genes differentially expressed in R. microplus male salivary glands in response to A. marginale infection. Additionally, a R. microplus-derived cell line, BME26, was used for the first time to also study tick cell gene expression in response to A. marginale infection. Results: Suppression subtractive hybridization libraries were constructed from infected and uninfected ticks and used to identify genes differentially expressed in male R. microplus salivary glands infected with A. marginale. A total of 279 ESTs were identified as candidate differentially expressed genes. Of these, five genes encoding for putative histamine-binding protein (22Hbp), von Willebrand factor (94Will), flagelliform silk protein (100Silk), Kunitz-like protease inhibitor precursor (108Kunz) and proline-rich protein BstNI subfamily 3 precursor (7BstNI3) were confirmed by real-time RT-PCR to be down-regulated in tick salivary glands infected with A. marginale. The impact of selected tick genes on A. marginale infections in tick salivary glands and BME26 cells was characterized by RNA interference. Silencing of the gene encoding for putative flagelliform silk protein (100Silk) resulted in reduced A. marginale infection in both tick salivary glands and cultured BME26 cells, while silencing of the gene encoding for subolesin (4D8) significantly reduced infection only in cultured BME26 cells. The knockdown of the gene encoding for putative metallothionein (93 Meth), significantly up-regulated in infected cultured BME26 cells, resulted in higher A. marginale infection levels in tick cells. Conclusions: Characterization of differential gene expression in salivary glands of R. microplus in response to A. marginale infection expands our understanding of the molecular mechanisms at the tick-pathogen interface. Functional studies suggested that differentially expressed genes encoding for subolesin, putative von Willebrand factor and flagelliform silk protein could play a role in A. marginale infection and multiplication in ticks. These tick genes found to be functionally relevant for tick-pathogen interactions will likely be candidates for development of vaccines designed for control of both ticks and tick-borne pathogens.
Resumo:
As a contribution towards detecting the genetic effects of low doses of genotoxic physical agents, this paper deals with the consequences of low-dose X-rays in the Aspergillus nidulans genome. The irradiation doses studied were those commonly used in dental clinics (1-5 cGy). Even very low doses promoted increased mitotic crossing-over frequencies in diploid strains heterozygous for several genetic markers including the ones involved in DNA repair and recombination mechanisms. Genetic markers of several heterozygous strains were individu`ally analyzed disclosing that some markers were especially sensitive to the treatments. These markers should be chosen as bio-indicators in the homozygotization index assay to better detect the recombinogenic/carcinogenic genomic effects of low-dose X-rays.
Resumo:
We observe zero-differential resistance states at low temperatures and moderate direct currents in a bilayer electron system formed by a wide quantum well. Several regions of vanishing resistance evolve from the inverted peaks of magneto-intersubband oscillations as the current increases. The experiment, supported by a theoretical analysis, suggests that the origin of this phenomenon is based on instability of homogeneous current flow under conditions of negative differential resistivity, which leads to formation of current domains in our sample, similar to the case of single-layer systems.
Resumo:
We show that bifurcations in chaotic scattering manifest themselves through the appearance of an infinitely fine-scale structure of singularities in the cross section. These ""rainbow singularities"" are created in a cascade, which is closely related to the bifurcation cascade undergone by the set of trapped orbits (the chaotic saddle). This cascade provides a signature in the differential cross section of the complex pattern of bifurcations of orbits underlying the transition to chaotic scattering. We show that there is a power law with a universal coefficient governing the sequence of births of rainbow singularities and we verify this prediction by numerical simulations.
Resumo:
We theoretically investigate negative differential resistance (NDR) for ballistic transport in semiconducting armchair graphene nanoribbon (aGNR) superlattices (5 to 20 barriers) at low bias voltages V(SD) < 500 mV. We combine the graphene Dirac Hamiltonian with the Landauer-Buttiker formalism to calculate the current I(SD) through the system. We find three distinct transport regimes in which NDR occurs: (i) a ""classical"" regime for wide layers, through which the transport across band gaps is strongly suppressed, leading to alternating regions of nearly unity and zero transmission probabilities as a function of V(SD) due to crossing of band gaps from different layers; (ii) a quantum regime dominated by superlattice miniband conduction, with current suppression arising from the misalignment of miniband states with increasing V(SD); and (iii) a Wannier-Stark ladder regime with current peaks occurring at the crossings of Wannier-Stark rungs from distinct ladders. We observe NDR at voltage biases as low as 10 mV with a high current density, making the aGNR superlattices attractive for device applications.
Resumo:
In this work we study some properties of the differential complex associated to a locally integrable (involutive) structure acting on forms with Gevrey coefficients. Among other results we prove that, for such complexes, Gevrey solvability follows from smooth solvability under the sole assumption of a regularity condition. As a consequence we obtain the proof of the Gevrey solvability for a first order linear PDE with real-analytic coefficients satisfying the Nirenberg-Treves condition (P).
Resumo:
A novel flow-based strategy for implementing simultaneous determinations of different chemical species reacting with the same reagent(s) at different rates is proposed and applied to the spectrophotometric catalytic determination of iron and vanadium in Fe-V alloys. The method relies on the influence of Fe(II) and V(IV) on the rate of the iodide oxidation by Cr(VI) under acidic conditions, the Jones reducing agent is then needed Three different plugs of the sample are sequentially inserted into an acidic KI reagent carrier stream, and a confluent Cr(VI) solution is added downstream Overlap between the inserted plugs leads to a complex sample zone with several regions of maximal and minimal absorbance values. Measurements performed on these regions reveal the different degrees of reaction development and tend to be more precise Data are treated by multivariate calibration involving the PLS algorithm The proposed system is very simple and rugged Two latent variables carried out ca 95% of the analytical information and the results are in agreement with ICP-OES. (C) 2010 Elsevier B V. All rights reserved.
Resumo:
The power transformer is a piece of electrical equipment that needs continuous monitoring and fast protection since it is very expensive and an essential element for a power system to perform effectively. The most common protection technique used is the percentage differential logic, which provides discrimination between an internal fault and different operating conditions. Unfortunately, there are some operating conditions of power transformers that can affect the protection behavior and the power system stability. This paper proposes the development of a new algorithm to improve the differential protection performance by using fuzzy logic and Clarke`s transform. An electrical power system was modeled using Alternative Transients Program (ATP) software to obtain the operational conditions and fault situations needed to test the algorithm developed. The results were compared to a commercial relay for validation, showing the advantages of the new method.
Resumo:
This paper presents a compact embedded fuzzy system for three-phase induction-motor scalar speed control. The control strategy consists in keeping constant the voltage-frequency ratio of the induction-motor supply source. A fuzzy-control system is built on a digital signal processor, which uses speed error and speed-error variation to change both the fundamental voltage amplitude and frequency of a sinusoidal pulsewidth modulation inverter. An alternative optimized method for embedded fuzzy-system design is also proposed. The controller performance, in relation to reference and load-torque variations, is evaluated by experimental results. A comparative analysis with conventional proportional-integral controller is also achieved.
Resumo:
In this work, a new boundary element formulation for the analysis of plate-beam interaction is presented. This formulation uses a three nodal value boundary elements and each beam element is replaced by its actions on the plate, i.e., a distributed load and end of element forces. From the solution of the differential equation of a beam with linearly distributed load the plate-beam interaction tractions can be written as a function of the nodal values of the beam. With this transformation a final system of equation in the nodal values of displacements of plate boundary and beam nodes is obtained and from it, all unknowns of the plate-beam system are obtained. Many examples are analyzed and the results show an excellent agreement with those from the analytical solution and other numerical methods. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
This paper discusses the need to simultaneously monitor voltage unbalance and harmonic distortions in addition to root-mean-square voltage values. An alternative way to obtain the parameters related to voltage unbalance at fundamental frequency as well as voltage harmonic distortions is here proposed, which is based on the representation of instantaneous values at the axes and at the instantaneous Euclidean norm. A new power-quality (PQ) index is then proposed to combine the effects of voltage unbalance and harmonic distortions. This new index is easily implemented into existing electronic power meters. This PQ index is determined from the analysis of temperature rise in induction motor windings, which were tested for long periods of time. This paper also shows that these voltage disturbances, which are harmful to the lifetime expectancy of motors, can be measured by alternative ways in relation to conventional methods. Although this paper deals with induction motors only, the results show the relevance for further studies on other pieces of equipment.