982 resultados para Differential Permeation Method
Resumo:
Impressive developments in X-ray imaging are associated with X-ray phase contrast computed tomography based on grating interferometry, a technique that provides increased contrast compared with conventional absorption-based imaging. A new "single-step" method capable of separating phase information from other contributions has been recently proposed. This approach not only simplifies data-acquisition procedures, but, compared with the existing phase step approach, significantly reduces the dose delivered to a sample. However, the image reconstruction procedure is more demanding than for traditional methods and new algorithms have to be developed to take advantage of the "single-step" method. In the work discussed in this paper, a fast iterative image reconstruction method named OSEM (ordered subsets expectation maximization) was applied to experimental data to evaluate its performance and range of applicability. The OSEM algorithm with different subsets was also characterized by comparison of reconstruction image quality and convergence speed. Computer simulations and experimental results confirm the reliability of this new algorithm for phase-contrast computed tomography applications. Compared with the traditional filtered back projection algorithm, in particular in the presence of a noisy acquisition, it furnishes better images at a higher spatial resolution and with lower noise. We emphasize that the method is highly compatible with future X-ray phase contrast imaging clinical applications.
Resumo:
Access to new biological sources is a key element of natural product research. A particularly large number of biologically active molecules have been found to originate from microorganisms. Very recently, the use of fungal co-culture to activate the silent genes involved in metabolite biosynthesis was found to be a successful method for the induction of new compounds. However, the detection and identification of the induced metabolites in the confrontation zone where fungi interact remain very challenging. To tackle this issue, a high-throughput UHPLC-TOF-MS-based metabolomic approach has been developed for the screening of fungal co-cultures in solid media at the petri dish level. The metabolites that were overexpressed because of fungal interactions were highlighted by comparing the LC-MS data obtained from the co-cultures and their corresponding mono-cultures. This comparison was achieved by subjecting automatically generated peak lists to statistical treatments. This strategy has been applied to more than 600 co-culture experiments that mainly involved fungal strains from the Fusarium genera, although experiments were also completed with a selection of several other filamentous fungi. This strategy was found to provide satisfactory repeatability and was used to detect the biomarkers of fungal induction in a large panel of filamentous fungi. This study demonstrates that co-culture results in consistent induction of potentially new metabolites.
Resumo:
A simple non-targeted differential HPLC-APCI/MS approach has been developed in order to survey metabolome modifications that occur in the leaves of Arabidopsis thaliana following wound-induced stress. The wound-induced accumulation of metabolites, particularly oxylipins, was evaluated by HPLC-MS analysis of crude leaf extracts. A generic, rapid and reproducible pressure liquid extraction procedure was developed for the analysis of restricted leaf samples without the need for specific sample preparation. The presence of various oxylipins was determined by head-to-head comparison of the HPLC-MS data, filtered with a component detection algorithm, and automatically compared with the aid of software searching for small differences in similar HPLC-MS profiles. Repeatability was verified in several specimens belonging to different series. Wound-inducible jasmonates were efficiently highlighted by this non-targeted approach without the need for complex sample preparation as is the case for the 'oxylipin signature' procedure based on GC-MS. Furthermore this HPLC-MS screening technique allowed the isolation of induced compounds for further characterisation by capillary-scale NMR (CapNMR) after HPLC scale-up. In this paper, the screening method is described and applied to illustrate its potential for monitoring polar and non-polar stress-induced constituents as well as its use in combination with CapNMR for the structural assignment of wound-induced compounds of interest
Resumo:
Commercially available PCM RT 20, RT 27, SP 22, A17 and SP 25 A8. Were analyzed using dynamic and step method of heat flux DSC. The results of the dinamic and step method were compared with commercial valures. It was found that RT 20 & RT 27 showed good conforming of results with commercial values while SP 22 A17 & SP 25 A8 did not show conformity.
Resumo:
In two previous papers [J. Differential Equations, 228 (2006), pp. 530 579; Discrete Contin. Dyn. Syst. Ser. B, 6 (2006), pp. 1261 1300] we have developed fast algorithms for the computations of invariant tori in quasi‐periodic systems and developed theorems that assess their accuracy. In this paper, we study the results of implementing these algorithms and study their performance in actual implementations. More importantly, we note that, due to the speed of the algorithms and the theoretical developments about their reliability, we can compute with confidence invariant objects close to the breakdown of their hyperbolicity properties. This allows us to identify a mechanism of loss of hyperbolicity and measure some of its quantitative regularities. We find that some systems lose hyperbolicity because the stable and unstable bundles approach each other but the Lyapunov multipliers remain away from 1. We find empirically that, close to the breakdown, the distances between the invariant bundles and the Lyapunov multipliers which are natural measures of hyperbolicity depend on the parameters, with power laws with universal exponents. We also observe that, even if the rigorous justifications in [J. Differential Equations, 228 (2006), pp. 530-579] are developed only for hyperbolic tori, the algorithms work also for elliptic tori in Hamiltonian systems. We can continue these tori and also compute some bifurcations at resonance which may lead to the existence of hyperbolic tori with nonorientable bundles. We compute manifolds tangent to nonorientable bundles.
Resumo:
In this paper we study the existence of a unique solution for linear stochastic differential equations driven by a Lévy process, where the initial condition and the coefficients are random and not necessarily adapted to the underlying filtration. Towards this end, we extend the method based on Girsanov transformations on Wiener space and developped by Buckdahn [7] to the canonical Lévy space, which is introduced in [25].
Resumo:
Background: Being physically assaulted is known to increase the risk of the occurrence of post-traumatic stress disorder (PTSD) symptoms but it may also skew judgements about the intentions of other people. The objectives of the study were to assess paranoia and PTSD after an assault and to test whether theory-derived cognitive factors predicted the persistence of these problems. Method: At 4 weeks after hospital attendance due to an assault, 106 people were assessed on multiple symptom measures (including virtual reality) and cognitive factors from models of paranoia and PTSD. The symptom measures were repeated 3 and 6 months later. Results: Factor analysis indicated that paranoia and PTSD were distinct experiences, though positively correlated. At 4 weeks, 33% of participants met diagnostic criteria for PTSD, falling to 16% at follow-up. Of the group at the first assessment, 80% reported that since the assault they were excessively fearful of other people, which over time fell to 66%. Almost all the cognitive factors (including information-processing style during the trauma, mental defeat, qualities of unwanted memories, self-blame, negative thoughts about self, worry, safety behaviours, anomalous internal experiences and cognitive inflexibility) predicted later paranoia and PTSD, but there was little evidence of differential prediction. Conclusions: Paranoia after an assault may be common and distinguishable from PTSD but predicted by a strikingly similar range of factors.
Resumo:
Metaheuristic methods have become increasingly popular approaches in solving global optimization problems. From a practical viewpoint, it is often desirable to perform multimodal optimization which, enables the search of more than one optimal solution to the task at hand. Population-based metaheuristic methods offer a natural basis for multimodal optimization. The topic has received increasing interest especially in the evolutionary computation community. Several niching approaches have been suggested to allow multimodal optimization using evolutionary algorithms. Most global optimization approaches, including metaheuristics, contain global and local search phases. The requirement to locate several optima sets additional requirements for the design of algorithms to be effective in both respects in the context of multimodal optimization. In this thesis, several different multimodal optimization algorithms are studied in regard to how their implementation in the global and local search phases affect their performance in different problems. The study concentrates especially on variations of the Differential Evolution algorithm and their capabilities in multimodal optimization. To separate the global and local search search phases, three multimodal optimization algorithms are proposed, two of which hybridize the Differential Evolution with a local search method. As the theoretical background behind the operation of metaheuristics is not generally thoroughly understood, the research relies heavily on experimental studies in finding out the properties of different approaches. To achieve reliable experimental information, the experimental environment must be carefully chosen to contain appropriate and adequately varying problems. The available selection of multimodal test problems is, however, rather limited, and no general framework exists. As a part of this thesis, such a framework for generating tunable test functions for evaluating different methods of multimodal optimization experimentally is provided and used for testing the algorithms. The results demonstrate that an efficient local phase is essential for creating efficient multimodal optimization algorithms. Adding a suitable global phase has the potential to boost the performance significantly, but the weak local phase may invalidate the advantages gained from the global phase.
Resumo:
Bakgrunden och inspirationen till föreliggande studie är tidigare forskning i tillämpningar på randidentifiering i metallindustrin. Effektiv randidentifiering möjliggör mindre säkerhetsmarginaler och längre serviceintervall för apparaturen i industriella högtemperaturprocesser, utan ökad risk för materielhaverier. I idealfallet vore en metod för randidentifiering baserad på uppföljning av någon indirekt variabel som kan mätas rutinmässigt eller till en ringa kostnad. En dylik variabel för smältugnar är temperaturen i olika positioner i väggen. Denna kan utnyttjas som insignal till en randidentifieringsmetod för att övervaka ugnens väggtjocklek. Vi ger en bakgrund och motivering till valet av den geometriskt endimensionella dynamiska modellen för randidentifiering, som diskuteras i arbetets senare del, framom en flerdimensionell geometrisk beskrivning. I de aktuella industriella tillämpningarna är dynamiken samt fördelarna med en enkel modellstruktur viktigare än exakt geometrisk beskrivning. Lösningsmetoder för den s.k. sidledes värmeledningsekvationen har många saker gemensamt med randidentifiering. Därför studerar vi egenskaper hos lösningarna till denna ekvation, inverkan av mätfel och något som brukar kallas förorening av mätbrus, regularisering och allmännare följder av icke-välställdheten hos sidledes värmeledningsekvationen. Vi studerar en uppsättning av tre olika metoder för randidentifiering, av vilka de två första är utvecklade från en strikt matematisk och den tredje från en mera tillämpad utgångspunkt. Metoderna har olika egenskaper med specifika fördelar och nackdelar. De rent matematiskt baserade metoderna karakteriseras av god noggrannhet och låg numerisk kostnad, dock till priset av låg flexibilitet i formuleringen av den modellbeskrivande partiella differentialekvationen. Den tredje, mera tillämpade, metoden kännetecknas av en sämre noggrannhet förorsakad av en högre grad av icke-välställdhet hos den mera flexibla modellen. För denna gjordes även en ansats till feluppskattning, som senare kunde observeras överensstämma med praktiska beräkningar med metoden. Studien kan anses vara en god startpunkt och matematisk bas för utveckling av industriella tillämpningar av randidentifiering, speciellt mot hantering av olinjära och diskontinuerliga materialegenskaper och plötsliga förändringar orsakade av “nedfallande” väggmaterial. Med de behandlade metoderna förefaller det möjligt att uppnå en robust, snabb och tillräckligt noggrann metod av begränsad komplexitet för randidentifiering.
Resumo:
The method of preserving detached wheat leaves in Petri dish was used for the inoculation and development of the fungus Puccinia triticina, the causal agent of wheat leaf rust. The reaction of 26 wheat cultivars was compared by using seedlings cultivated in pots (in vivo) and detached leaves (in vitro) inoculated with four physiological races of the pathogen. After inoculation, the material was kept in a growth chamber for 15 days. The reaction was evaluated on the 15th day after inoculation. Results for each race in the evaluated genotypes confirmed the efficiency of the detached leaf method in assessing the reaction of wheat cultivars.
Resumo:
The objective of this thesis work is to develop and study the Differential Evolution Algorithm for multi-objective optimization with constraints. Differential Evolution is an evolutionary algorithm that has gained in popularity because of its simplicity and good observed performance. Multi-objective evolutionary algorithms have become popular since they are able to produce a set of compromise solutions during the search process to approximate the Pareto-optimal front. The starting point for this thesis was an idea how Differential Evolution, with simple changes, could be extended for optimization with multiple constraints and objectives. This approach is implemented, experimentally studied, and further developed in the work. Development and study concentrates on the multi-objective optimization aspect. The main outcomes of the work are versions of a method called Generalized Differential Evolution. The versions aim to improve the performance of the method in multi-objective optimization. A diversity preservation technique that is effective and efficient compared to previous diversity preservation techniques is developed. The thesis also studies the influence of control parameters of Differential Evolution in multi-objective optimization. Proposals for initial control parameter value selection are given. Overall, the work contributes to the diversity preservation of solutions in multi-objective optimization.
Resumo:
Parameter estimation still remains a challenge in many important applications. There is a need to develop methods that utilize achievements in modern computational systems with growing capabilities. Owing to this fact different kinds of Evolutionary Algorithms are becoming an especially perspective field of research. The main aim of this thesis is to explore theoretical aspects of a specific type of Evolutionary Algorithms class, the Differential Evolution (DE) method, and implement this algorithm as codes capable to solve a large range of problems. Matlab, a numerical computing environment provided by MathWorks inc., has been utilized for this purpose. Our implementation empirically demonstrates the benefits of a stochastic optimizers with respect to deterministic optimizers in case of stochastic and chaotic problems. Furthermore, the advanced features of Differential Evolution are discussed as well as taken into account in the Matlab realization. Test "toycase" examples are presented in order to show advantages and disadvantages caused by additional aspects involved in extensions of the basic algorithm. Another aim of this paper is to apply the DE approach to the parameter estimation problem of the system exhibiting chaotic behavior, where the well-known Lorenz system with specific set of parameter values is taken as an example. Finally, the DE approach for estimation of chaotic dynamics is compared to the Ensemble prediction and parameter estimation system (EPPES) approach which was recently proposed as a possible solution for similar problems.
Resumo:
We apply the Bogoliubov Averaging Method to the study of the vibrations of an elastic foundation, forced by a Non-ideal energy source. The considered model consists of a portal plane frame with quadratic nonlinearities, with internal resonance 1:2, supporting a direct current motor with limited power. The non-ideal excitation is in primary resonance in the order of one-half with the second mode frequency. The results of the averaging method, plotted in time evolution curve and phase diagrams are compared to those obtained by numerically integrating of the original differential equations. The presence of the saturation phenomenon is verified by analytical procedures.
Resumo:
The objective of this thesis is to develop and generalize further the differential evolution based data classification method. For many years, evolutionary algorithms have been successfully applied to many classification tasks. Evolution algorithms are population based, stochastic search algorithms that mimic natural selection and genetics. Differential evolution is an evolutionary algorithm that has gained popularity because of its simplicity and good observed performance. In this thesis a differential evolution classifier with pool of distances is proposed, demonstrated and initially evaluated. The differential evolution classifier is a nearest prototype vector based classifier that applies a global optimization algorithm, differential evolution, to determine the optimal values for all free parameters of the classifier model during the training phase of the classifier. The differential evolution classifier applies the individually optimized distance measure for each new data set to be classified is generalized to cover a pool of distances. Instead of optimizing a single distance measure for the given data set, the selection of the optimal distance measure from a predefined pool of alternative measures is attempted systematically and automatically. Furthermore, instead of only selecting the optimal distance measure from a set of alternatives, an attempt is made to optimize the values of the possible control parameters related with the selected distance measure. Specifically, a pool of alternative distance measures is first created and then the differential evolution algorithm is applied to select the optimal distance measure that yields the highest classification accuracy with the current data. After determining the optimal distance measures for the given data set together with their optimal parameters, all determined distance measures are aggregated to form a single total distance measure. The total distance measure is applied to the final classification decisions. The actual classification process is still based on the nearest prototype vector principle; a sample belongs to the class represented by the nearest prototype vector when measured with the optimized total distance measure. During the training process the differential evolution algorithm determines the optimal class vectors, selects optimal distance metrics, and determines the optimal values for the free parameters of each selected distance measure. The results obtained with the above method confirm that the choice of distance measure is one of the most crucial factors for obtaining higher classification accuracy. The results also demonstrate that it is possible to build a classifier that is able to select the optimal distance measure for the given data set automatically and systematically. After finding optimal distance measures together with optimal parameters from the particular distance measure results are then aggregated to form a total distance, which will be used to form the deviation between the class vectors and samples and thus classify the samples. This thesis also discusses two types of aggregation operators, namely, ordered weighted averaging (OWA) based multi-distances and generalized ordered weighted averaging (GOWA). These aggregation operators were applied in this work to the aggregation of the normalized distance values. The results demonstrate that a proper combination of aggregation operator and weight generation scheme play an important role in obtaining good classification accuracy. The main outcomes of the work are the six new generalized versions of previous method called differential evolution classifier. All these DE classifier demonstrated good results in the classification tasks.
Resumo:
Amplification of the MYCN gene in neuroblastomas is a potent biological marker of highly aggressive tumors, which are invariably fatal unless sound clinical management is applied. To determine the usefulness of semi-quantitative differential PCR (SQ-PCR) for accurate quantification of MYCN gene copy number, we evaluated the analytical performance of this method by comparing the results obtained with it for 101 tumor samples of neuroblastoma to that obtained by absolute and relative real-time PCR. Similar results were obtained for 100 (99%) samples, no significant difference was detected between the median log10 MYCN copy number (1.53 by SQ-PCR versus 1.55 by absolute real-time PCR), and the results of the two assays correlated closely (r = 0.8, Pearson correlation; P < 0.001). In the comparison of SQ-PCR and relative real-time PCR, SQ-PCR versus relative real-time PCR concordant results were found in 100 (99%) samples, no significant difference was found in median log10 MYCN copy number (1.53 by SQ-PCR versus 1.27 by relative real-time PCR), and the results of the two assays correlated closely (r = 0.8, Pearson correlation; P < 0.001). These findings indicate that the performance of SQ-PCR was comparable to that of real-time PCR for the amplification and quantification of MYCN copy number. Thus, SQ-PCR can be reliably used as an alternative assay in laboratories without facilities for real-time PCR.