937 resultados para Differential Equations with "maxima"


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We construct $x^0$ in ${\Bbb R}^{\Bbb N}$ and a row-finite matrix $T=\{T_{i,j}(t)\}_{i,j\in\N}$ of polynomials of one real variable $t$ such that the Cauchy problem $\dot x(t)=T_tx(t)$, $x(0)=x^0$ in the Fr\'echet space $\R^\N$ has no solutions. We also construct a row-finite matrix $A=\{A_{i,j}(t)\}_{i,j\in\N}$ of $C^\infty(\R)$ functions such that the Cauchy problem $\dot x(t)=A_tx(t)$, $x(0)=x^0$ in ${\Bbb R}^{\Bbb N}$ has no solutions for any $x^0\in{\Bbb R}^{\Bbb N}\setminus\{0\}$. We provide some sufficient condition of solvability and of unique solvability for linear ordinary differential equations $\dot x(t)=T_tx(t)$ with matrix elements $T_{i,j}(t)$ analytically dependent on $t$.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let $\Gamma$ be the class of sequentially complete locally convex spaces such that an existence theorem holds for the linear Cauchy problem $\dot x = Ax$, $x(0) = x_0$ with respect to functions $x: R\to E$. It is proved that if $E\in \Gamma$, then $E\times R^A$ is-an-element-of $\Gamma$ for an arbitrary set $A$. It is also proved that a topological product of infinitely many infinite-dimensional Frechet spaces, each not isomorphic to $\omega$, does not belong to $\Gamma$.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We propose a new approach for modeling nonlinear multivariate interest rate processes based on time-varying copulas and reducible stochastic differential equations (SDEs). In the modeling of the marginal processes, we consider a class of nonlinear SDEs that are reducible to Ornstein--Uhlenbeck (OU) process or Cox, Ingersoll, and Ross (1985) (CIR) process. The reducibility is achieved via a nonlinear transformation function. The main advantage of this approach is that these SDEs can account for nonlinear features, observed in short-term interest rate series, while at the same time leading to exact discretization and closed-form likelihood functions. Although a rich set of specifications may be entertained, our exposition focuses on a couple of nonlinear constant elasticity volatility (CEV) processes, denoted as OU-CEV and CIR-CEV, respectively. These two processes encompass a number of existing models that have closed-form likelihood functions. The transition density, the conditional distribution function, and the steady-state density function are derived in closed form as well as the conditional and unconditional moments for both processes. In order to obtain a more flexible functional form over time, we allow the transformation function to be time varying. Results from our study of U.S. and UK short-term interest rates suggest that the new models outperform existing parametric models with closed-form likelihood functions. We also find the time-varying effects in the transformation functions statistically significant. To examine the joint behavior of interest rate series, we propose flexible nonlinear multivariate models by joining univariate nonlinear processes via appropriate copulas. We study the conditional dependence structure of the two rates using Patton (2006a) time-varying symmetrized Joe--Clayton copula. We find evidence of asymmetric dependence between the two rates, and that the level of dependence is positively related to the level of the two rates. (JEL: C13, C32, G12) Copyright The Author 2010. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org, Oxford University Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Esta dissertação estuda essencialmente dois problemas: (A) uma classe de equações unidimensionais de reacção-difusão-convecção em meios não uniformes (dependentes do espaço), e (B) um problema elíptico não-linear e paramétrico ligado a fenómenos de capilaridade. A Análise de Perturbação Singular e a dinâmica de Hamilton-Jacobi são utilizadas na obtenção de expressões assimptóticas para a solução (com comportamento de frente) e para a sua velocidade de propagação. Os seguintes três métodos de decomposição, Adomian Decomposition Method (ADM), Decomposition Method based on Infinite Products (DIP), e New Iterative Method (NIM), são apresentados e brevemente comparados. Adicionalmente, condições suficientes para a convergência da solução em série, obtida pelo ADM, e uma aplicação a um problema da Telecomunicações por Fibras Ópticas, envolvendo EDOs não-lineares designadas equações de Raman, são discutidas. Um ponto de vista mais abrangente que unifica os métodos de decomposição referidos é também apresentado. Para subclasses desta EDP são obtidas soluções numa forma explícita, para diferentes tipos de dados e usando uma variante do método de simetrias de Bluman-Cole. Usando Teoria de Pontos Críticos (o teorema usualmente designado mountain pass) e técnicas de truncatura, prova-se a existência de duas soluções não triviais (uma positiva e uma negativa) para o problema elíptico não-linear e paramétrico (B). A existência de uma terceira solução não trivial é demonstrada usando Grupos Críticos e Teoria de Morse.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La thèse est composée d’un chapitre de préliminaires et de deux articles sur le sujet du déploiement de singularités d’équations différentielles ordinaires analytiques dans le plan complexe. L’article Analytic classification of families of linear differential systems unfolding a resonant irregular singularity traite le problème de l’équivalence analytique de familles paramétriques de systèmes linéaires en dimension 2 qui déploient une singularité résonante générique de rang de Poincaré 1 dont la matrice principale est composée d’un seul bloc de Jordan. La question: quand deux telles familles sontelles équivalentes au moyen d’un changement analytique de coordonnées au voisinage d’une singularité? est complètement résolue et l’espace des modules des classes d’équivalence analytiques est décrit en termes d’un ensemble d’invariants formels et d’un invariant analytique, obtenu à partir de la trace de la monodromie. Des déploiements universels sont donnés pour toutes ces singularités. Dans l’article Confluence of singularities of non-linear differential equations via Borel–Laplace transformations on cherche des solutions bornées de systèmes paramétriques des équations non-linéaires de la variété centre de dimension 1 d’une singularité col-noeud déployée dans une famille de champs vectoriels complexes. En général, un système d’ÉDO analytiques avec une singularité double possède une unique solution formelle divergente au voisinage de la singularité, à laquelle on peut associer des vraies solutions sur certains secteurs dans le plan complexe en utilisant les transformations de Borel–Laplace. L’article montre comment généraliser cette méthode et déployer les solutions sectorielles. On construit des solutions de systèmes paramétriques, avec deux singularités régulières déployant une singularité irrégulière double, qui sont bornées sur des domaines «spirals» attachés aux deux points singuliers, et qui, à la limite, convergent vers une paire de solutions sectorielles couvrant un voisinage de la singularité confluente. La méthode apporte une description unifiée pour toutes les valeurs du paramètre.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During recent years, the theory of differential inequalities has been extensively used to discuss singular perturbation problems and method of lines to partial differential equations. The present thesis deals with some differential inequality theorems and their applications to singularly perturbed initial value problems, boundary value problems for ordinary differential equations in Banach space and initial boundary value problems for parabolic differential equations. The method of lines to parabolic and elliptic differential equations are also dealt The thesis is organised into nine chapters

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present thesis is about the inverse problem in differential Galois Theory. Given a differential field, the inverse  problem asks which linear algebraic groups can be realized as differential Galois groups of Picard-Vessiot extensions of this field.   In this thesis we will concentrate on the realization of the classical groups as differential Galois groups. We introduce a method for a very general realization of these groups. This means that we present for the classical groups of Lie rank $l$ explicit linear differential equations where the coefficients are differential polynomials in $l$ differential indeterminates over an algebraically closed field of constants $C$, i.e. our differential ground field is purely differential transcendental over the constants.   For the groups of type $A_l$, $B_l$, $C_l$, $D_l$ and $G_2$ we managed to do these realizations at the same time in terms of Abhyankar's program 'Nice Equations for Nice Groups'. Here the choice of the defining matrix is important. We found out that an educated choice of $l$ negative roots for the parametrization together with the positive simple roots leads to a nice differential equation and at the same time defines a sufficiently general element of the Lie algebra. Unfortunately for the groups of type $F_4$ and $E_6$ the linear differential equations for such elements are of enormous length. Therefore we keep in the case of $F_4$ and $E_6$ the defining matrix differential equation which has also an easy and nice shape.   The basic idea for the realization is the application of an upper and lower bound criterion for the differential Galois group to our parameter equations and to show that both bounds coincide. An upper and lower bound criterion can be found in literature. Here we will only use the upper bound, since for the application of the lower bound criterion an important condition has to be satisfied. If the differential ground field is $C_1$, e.g., $C(z)$ with standard derivation, this condition is automatically satisfied. Since our differential ground field is purely differential transcendental over $C$, we have no information whether this condition holds or not.   The main part of this thesis is the development of an alternative lower bound criterion and its application. We introduce the specialization bound. It states that the differential Galois group of a specialization of the parameter equation is contained in the differential Galois group of the parameter equation. Thus for its application we need a differential equation over $C(z)$ with given differential Galois group. A modification of a result from Mitschi and Singer yields such an equation over $C(z)$ up to differential conjugation, i.e. up to transformation to the required shape. The transformation of their equation to a specialization of our parameter equation is done for each of the above groups in the respective transformation lemma.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study ordinary nonlinear singular differential equations which arise from steady conservation laws with source terms. An example of steady conservation laws which leads to those scalar equations is the Saint–Venant equations. The numerical solution of these scalar equations is sought by using the ideas of upwinding and discretisation of source terms. Both the Engquist–Osher scheme and the Roe scheme are used with different strategies for discretising the source terms.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scale-invariant moving finite element method is proposed for the adaptive solution of nonlinear partial differential equations. The mesh movement is based on a finite element discretisation of a scale-invariant conservation principle incorporating a monitor function, while the time discretisation of the resulting system of ordinary differential equations is carried out using a scale-invariant time-stepping which yields uniform local accuracy in time. The accuracy and reliability of the algorithm are successfully tested against exact self-similar solutions where available, and otherwise against a state-of-the-art h-refinement scheme for solutions of a two-dimensional porous medium equation problem with a moving boundary. The monitor functions used are the dependent variable and a monitor related to the surface area of the solution manifold. (c) 2005 IMACS. Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper we establish the existence of standing wave solutions for quasilinear Schrodinger equations involving critical growth. By using a change of variables, the quasilinear equations are reduced to semilinear one. whose associated functionals are well defined in the usual Sobolev space and satisfy the geometric conditions of the mountain pass theorem. Using this fact, we obtain a Cerami sequence converging weakly to a solution v. In the proof that v is nontrivial, the main tool is the concentration-compactness principle due to P.L. Lions together with some classical arguments used by H. Brezis and L. Nirenberg (1983) in [9]. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study the existence of global solutions for a class of impulsive abstract functional differential equation. An application involving a parabolic system With impulses is considered. (c) 2008 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is known that retarded functional differential equations can be regarded as Banach-space-valued generalized ordinary differential equations (GODEs). In this paper, some stability concepts for retarded functional differential equations are introduced and they are discussed using known stability results for GODEs. Then the equivalence of the different concepts of stabilities considered here are proved and converse Lyapunov theorems for a very wide class of retarded functional differential equations are obtained by means of the correspondence of this class of equations with GODEs.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a certain type of second-order neutral delay differential systems and we establish two results concerning the oscillation of solutions after the system undergoes controlled abrupt perturbations (called impulses). As a matter of fact, some particular non-impulsive cases of the system are oscillatory already. Thus, we are interested in finding adequate impulse controls under which our system remains oscillatory. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present a sufficient condition for a zero of a function that arises typically as the characteristic equation of a linear functional differential equations of neutral type, to be simple and dominant. This knowledge is useful in order to derive the asymptotic behaviour of solutions of such equations. A simple characteristic equation, arisen from the study of delay equations with small delay, is analyzed in greater detail. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we study binary differential equations a(x, y)dy (2) + 2b(x, y) dx dy + c(x, y)dx (2) = 0, where a, b, and c are real analytic functions. Following the geometric approach of Bruce and Tari in their work on multiplicity of implicit differential equations, we introduce a definition of the index for this class of equations that coincides with the classical Hopf`s definition for positive binary differential equations. Our results also apply to implicit differential equations F(x, y, p) = 0, where F is an analytic function, p = dy/dx, F (p) = 0, and F (pp) not equal aEuro parts per thousand 0 at the singular point. For these equations, we relate the index of the equation at the singular point with the index of the gradient of F and index of the 1-form omega = dy -aEuro parts per thousand pdx defined on the singular surface F = 0.