973 resultados para Dies (Metal-working) - Design and construction


Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we present the design and construction of a prototype target tracking system. The experimental set up consists of three main modules for moving the object, detecting the motion of the object and its tracking. The mechanism for moving the object includes an object and two stepper motors and their driving and control circuitry. The detection of the object’s motion is realized by photo switch array. The tracking mechanism consists of a laser beam and two DC servomotors and their associated circuitry. The control algorithm is a standard fuzzy logic controller. The system is designed to operate in two modes in such a way that the role of target and tracker can be interchanged. Experimental results indicate that the fuzzy controller is capable of controlling the system in both modes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

During 1999 the Department of Industry, Science and Resources (ISR) published 4 research reports it had commissioned from the Australian Expert Group in Industry Studies (AEGIS), a research centre of the University of Western Sydney, Macarthur. ISR will shortly publish the fifth and final report in this series. The five reports were commissioned by the Department, as part of the Building and Construction Action Agenda process, to investigate the dynamics and performance of the sector, particularly in relation its innovative capacity. Professor Jane Marceau, PVCR at the University of Western Sydney and Director of AEGIS, led the research team. Dr Karen Manley was the researcher and joint author on three of the five reports. This paper outlines the approach and key findings of each of the five reports. The reports examined 5 key elements of the ‘building and construction product system’. The term ‘product system’ reflects the very broad range of industries and players we consider to contribute to the performance of the building and construction industries. The term ‘product system’ also highlights our focus on the systemic qualities of the building and construction industries. We were most interested in the inter-relationships between key segments and players and how these impacted on the innovation potential of the product system. The ‘building and construction product system’ is hereafter referred to as ‘the industry’ for ease of presentation. All the reports are based, at least in part, on an interviewing or survey research phase which involved gathering data from public and private sector players nationally. The first report ‘maps’ the industry to identify and describe its key elements and the inter-relationships between them. The second report focuses specifically on the linkages between public-sector research organisations and firms in the industry. The third report examines the conditions surrounding the emergence of new businesses in the industry. The fourth report examines how manufacturing businesses are responding to customer demands for ‘total solutions’ to their building and construction needs, by providing various services to clients. The fifth report investigates the capacity of the industry to encourage and undertake energy efficient building design and construction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulse Forming Line (PFL) based high voltage pulsed power systems are well suited for low impedance High Power Microwave (HPM) sources such as a virtual cathode oscillator (VIRCATOR) operating in nanosecond regimes. The system under development consists of a primary voltage source that charges the capacitor bank of a Marx pulser over a long time duration. The Marx pulser output is then conditioned by a PFL to match the requirement of the HPM diode load. This article describes the design and construction of an oil insulated pulse forming line for a REB (Relativistic Electron Beam) diode used in a VIRCATOR for the generation of high power microwaves. Design of a 250 kV/10 kA/60 ns PFL, including the PSPICE simulation for various load conditions are described.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A widely recognised theme of construction economics suggests that the cost of construction per square metre increases as building height rises. However, after many years, research conducted regarding the height and cost issue have established a classic relationship between those two, well known as a U-shaped curve. This paper describes the study of height-cost relationship of high-rise residential buildings in Shanghai and Hong Kong. Initial findings indicated that the curved relationships of height-cost of residential buildings in Shanghai and Hong Kong exhibit different profiles. The differences suggest that, Hong Kong contractors have more expertise in multi-storey and high-rise construction than contractors in Shanghai. The dissimilarities also imply that different sets of criteria should be applied in the judgement of height affects cost in different locations. Many factors could be contributors, such as the history and experience in constructing residential high-rise buildings, location, linkage and relationships to the neighbourhood provinces, design and construction regulations, and government policy on residential construction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper reviews the technical features and requirements of Building Information Modelling (BIM)-servers as collaboration platforms for multi-disciplinary building and construction projects. Multi-disciplinary collaboration is the norm in the Architecture, Engineering, and Construction (AEC) industries, especially in complex projects. The widespread adoption of object-oriented Computer-aided Design (CAD) tools that support BIM capabilities has generated greater interest in model based exchange of information across disciplines and consultants who have traditionally collaborated through the frequent exchange of 2D drawings and documents. BIM-servers are collaboration platforms that are expected to provide the technical capability to support this inter-disciplinary exchange of 3D models in addition to intelligent management of the related drawings, documents and other forms of data. Since BIM-servers are a recent technical development a review of their technical features can help further development. This paper serves this objective by providing a review of the technical features and requirements for using BIM-servers as multi-disciplinary collaboration platforms on building and construction projects. The methodologies include focus group interviews (FIGs) with representatives from the diverse AEC disciplines, a case study on a state-of-the-art BIM-server, and a critical review and analysis of current collaboration platforms that are available to the AEC industries. This paper concludes that greater emphasis should be placed on supporting technical requirements to facilitate technology management and implementation across disciplines. Their implications for user-centric technology development in design and construction industry are also discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Large parts of the world are subjected to one or more natural hazards, such as earthquakes, tsunamis, landslides, tropical storms (hurricanes, cyclones and typhoons), costal inundation and flooding. Virtually the entire world is at risk of man-made hazards. In recent decades, rapid population growth and economic development in hazard-prone areas have greatly increased the potential of multiple hazards to cause damage and destruction of buildings, bridges, power plants, and other infrastructure; thus posing a grave danger to the community and disruption of economic and societal activities. Although an individual hazard is significant in many parts of the United States (U.S.), in certain areas more than one hazard may pose a threat to the constructed environment. In such areas, structural design and construction practices should address multiple hazards in an integrated manner to achieve structural performance that is consistent with owner expectations and general societal objectives. The growing interest and importance of multiple-hazard engineering has been recognized recently. This has spurred the evolution of multiple-hazard risk-assessment frameworks and development of design approaches which have paved way for future research towards sustainable construction of new and improved structures and retrofitting of the existing structures. This report provides a review of literature and the current state of practice for assessment, design and mitigation of the impact of multiple hazards on structural infrastructure. It also presents an overview of future research needs related to multiple-hazard performance of constructed facilities.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Mini-Numerical Electromagnetic Code (MININEC) program, a PC-Compatible version of the powerful NEC program, is used to design a new type of reduced-size antenna. The validity of the program to model simple well-known antennas, such as dipoles and monopoles, is first shown. More complex geometries such as folded dipoles, and meander dipole antennas are also analysed using the program. The final design geometry of a meander folded dipole is characterized with MININEC, yielding results that serve as the basis for the practical construction of the antenna. Finally, the laboratory work with a prototype antenna is described, and practical results are presented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study had three objectives: (1) to develop a comprehensive truck simulation that executes rapidly, has a modular program construction to allow variation of vehicle characteristics, and is able to realistically predict vehicle motion and the tire-road surface interaction forces; (2) to develop a model of doweled portland cement concrete pavement that can be used to determine slab deflection and stress at predetermined nodes, and that allows for the variation of traditional thickness design factors; and (3) to implement these two models on a work station with suitable menu driven modules so that both existing and proposed pavements can be evaluated with respect to design life, given specific characteristics of the heavy vehicles that will be using the facility. This report summarizes the work that has been performed during the first year of the study. Briefly, the following has been accomplished: A two dimensional model of a typical 3-S2 tractor-trailer combination was created. A finite element structural analysis program, ANSYS, was used to model the pavement. Computer runs have been performed varying the parameters defining both vehicle and road elements. The resulting time specific displacements for each node are plotted, and the displacement basin is generated for defined vehicles. Relative damage to the pavement can then be estimated. A damage function resulting from load replications must be assumed that will be reflected by further pavement deterioration. Comparison with actual damage on Interstate 80 will eventually allow verification of these procedures.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In continuation of our interest in pyrazole based multifunctional metal-organic frameworks (MOFs), we report herein the construction of a series of Co(II) MOFs using a bis-pyrazole ligand and various benzene polycarboxylic acids. Employment of different acids has resulted in different architectures ranging from a two-dimensional grid network, porous nanochannels with interesting double helical features such as supramolecular chicken wire, to three-dimensional diamondoid networks. One of the distinguishing features of the network is their larger dimensions which can be directly linked to a relatively larger size of the ligand molecule. Conformational flexibility of the ligand also plays a decisive role in determining both the dimensionality and topology of the final structure. Furthermore, chirality associated with helical networks and magnetic properties of two MOFs have also been investigated.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This dissertation focuses on the incorporation of non-innocent or multifunctional moieties into different ligand scaffolds to support one or multiple metal centers in close proximity. Chapter 2 focuses on the initial efforts to synthesize hetero- or homometallic tri- or dinuclear metal carbonyl complexes supported by para-terphenyl diphosphine ligands. A series of [M2M’(CO)4]-type clusters (M = Ni, Pd; M’ = Fe, Co) could be accessed and used to relate the metal composition to the properties of the complexes. During these studies it was also found that non-innocent behavior was observed in dinuclear Fe complexes that result from changes in oxidation state of the cluster. These studies led to efforts to rationally incorporate central arene moieties capable managing both protons and electrons during small molecule activation.

Chapter 3 discusses the synthesis of metal complexes supported by a novel para-terphenyl diphosphine ligand containing a non-innocent 1,4-hydroquinone moiety as the central arene. A Pd0-hydroquinone complex was found to mediate the activation of a variety of small molecules to form the corresponding Pd0-quinone complexes in a formal two proton ⁄ two electron transformation. Mechanistic investigations of dioxygen activation revealed a metal-first activation process followed by subsequent proton and electron transfer from the ligand. These studies revealed the capacity of the central arene substituent to serve as a reservoir for a formal equivalent of dihydrogen, although the stability of the M-quinone compounds prevented access to the PdII-quinone oxidation state, thus hindering of small molecule transformations requiring more than two electrons per equivalent of metal complex.

Chapter 4 discusses the synthesis of metal complexes supported by a ligand containing a 3,5-substituted pyridine moiety as the linker separating the phenylene phosphine donors. Nickel and palladium complexes supported by this ligand were found to tolerate a wide variety of pyridine nitrogen-coordinated electrophiles which were found to alter central pyridine electronics, and therefore metal-pyridine π-system interactions, substantially. Furthermore, nickel complexes supported by this ligand were found to activate H-B and H-Si bonds and formally hydroborate and hydrosilylate the central pyridine ring. These systems highlight the potential use of pyridine π-system-coordinated metal complexes to reversibly store reducing equivalents within the ligand framework in a manner akin to the previously discussed 1,4-hydroquinone diphosphine ligand scaffold.

Chapter 5 departs from the phosphine-based chemistry and instead focuses on the incorporation of hydrogen bonding networks into the secondary coordination sphere of [Fe44-O)]-type clusters supported by various pyrazolate ligands. The aim of this project is to stabilize reactive oxygenic species, such as oxos, to study their spectroscopy and reactivity in the context of complicated multimetallic clusters. Herein is reported this synthesis and electrochemical and Mössbauer characterization of a series of chloride clusters have been synthesized using parent pyrazolate and a 3-aminophenyl substituted pyrazolate ligand. Efforts to rationally access hydroxo and oxo clusters from these chloride precursors represents ongoing work that will continue in the group.

Appendix A discusses attempts to access [Fe3Ni]-type clusters as models of the enzymatic active site of [NiFe] carbon monoxide dehydrogenase. Efforts to construct tetranuclear clusters with an interstitial sulfide proved unsuccessful, although a (μ3-S) ligand could be installed through non-oxidative routes into triiron clusters. While [Fe3Ni(μ4-O)]-type clusters could be assembled, accessing an open heterobimetallic edge site proved challenging, thus prohibiting efforts to study chemical transformations, such as hydroxide attack onto carbon monoxide or carbon dioxide coordination, relevant to the native enzyme. Appendix B discusses the attempts to synthesize models of the full H-cluster of [FeFe]-hydrogenase using a bioinorganic approach. A synthetic peptide containing three cysteine donors was successfully synthesized and found to chelate a preformed synthetic [Fe4S4] cluster. However, efforts to incorporate the diiron subsite model complex proved challenging as the planned thioester exchange reaction was found to non-selectively acetylate the peptide backbone, thus preventing the construction of the full six-iron cluster.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aim of this study is to investigate the consequences of cross-cultural adjustment in an under researched sample of British expatriates working on International Architectural, Engineering and Construction (AEC) assignments. Adjustment is the primary outcome of an expatriate assignment. According to Bhaskar-Srinivas et al., (2005), Harrison et al., (2004) it is viewed to affect other work related outcomes which could eventually predict expatriate success. To address the scarcity of literature on expatriate management in the AEC sector, an exploratory design was adopted. Phase one is characterised by extensive review of extant literature, whereas phase two was qualitative exploration from British expatriates’ perspective; here seven unstructured interviews were carried out. Further, cognitive mapping analysis through Banaxia decision explorer software was conducted to develop a theoretical framework and propose various hypotheses. The findings imply that British AEC firms could sustain their already established competitive advantage in the global marketplace by acknowledging the complexity of international assignments, prioritising expatriate management and offering a well-rounded support to facilitate expatriate adjustment and ultimately achieve critical outcomes like performance, assignment completion and job satisfaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The main aim of this study is to investigate the consequences of cross-cultural adjustment in an under researched sample of British expatriates working on International Architectural, Engineering and Construction (AEC) assignments. Adjustment is the primary outcome of an expatriate assignment. According to Bhaskar-Srinivas et al., (2005), Harrison et al., (2004) it is viewed to affect other work related outcomes which could eventually predict expatriate success. To address the scarcity of literature on expatriate management in the AEC sector, an exploratory design was adopted. Phase one is characterised by extensive review of extant literature, whereas phase two was qualitative exploration from British expatriatesÕ perspective; here seven unstructured interviews were carried out. Further, cognitive mapping analysis through Banaxia decision explorer software was conducted to develop a theoretical framework and propose various hypotheses. The findings imply that British AEC firms could sustain their already established competitive advantage in the global marketplace by acknowledging the complexity of international assignments, prioritising expatriate management and offering a well-rounded support to facilitate expatriate adjustment and ultimately achieve critical outcomes like performance, assignment completion and job satisfaction.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Our research goals are focused on the preparation of novel molecule-based materials that possess specifically designed properties in solution or in the solid state e.g. self-assembly, magnetism, conductivity and spin crossover phenomena. Most of our systems incorporate paramagnetic transition metal ions and the search for new molecule-based magnetic materials is a prominent theme. Specific areas of research include the preparation and study of oxalate based 2D and 3D magnets, probing the versatility of octacyanometalate building blocks as precursors for new molecular magnets, and the preparation of new tetrathiafulvalene (TIF) derivatives for applications in molecular and supramolecular chemistry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transition metal oxides are functional materials that have advanced applications in many areas, because of their diverse properties (optical, electrical, magnetic, etc.), hardness, thermal stability and chemical resistance. Novel applications of the nanostructures of these oxides are attracting significant interest as new synthesis methods are developed and new structures are reported. Hydrothermal synthesis is an effective process to prepare various delicate structures of metal oxides on the scales from a few to tens of nanometres, specifically, the highly dispersed intermediate structures which are hardly obtained through pyro-synthesis. In this thesis, a range of new metal oxide (stable and metastable titanate, niobate) nanostructures, namely nanotubes and nanofibres, were synthesised via a hydrothermal process. Further structure modifications were conducted and potential applications in catalysis, photocatalysis, adsorption and construction of ceramic membrane were studied. The morphology evolution during the hydrothermal reaction between Nb2O5 particles and concentrated NaOH was monitored. The study demonstrates that by optimising the reaction parameters (temperature, amount of reactants), one can obtain a variety of nanostructured solids, from intermediate phases niobate bars and fibres to the stable phase cubes. Trititanate (Na2Ti3O7) nanofibres and nanotubes were obtained by the hydrothermal reaction between TiO2 powders or a titanium compound (e.g. TiOSO4·xH2O) and concentrated NaOH solution by controlling the reaction temperature and NaOH concentration. The trititanate possesses a layered structure, and the Na ions that exist between the negative charged titanate layers are exchangeable with other metal ions or H+ ions. The ion-exchange has crucial influence on the phase transition of the exchanged products. The exchange of the sodium ions in the titanate with H+ ions yields protonated titanate (H-titanate) and subsequent phase transformation of the H-titanate enable various TiO2 structures with retained morphology. H-titanate, either nanofibres or tubes, can be converted to pure TiO2(B), pure anatase, mixed TiO2(B) and anatase phases by controlled calcination and by a two-step process of acid-treatment and subsequent calcination. While the controlled calcination of the sodium titanate yield new titanate structures (metastable titanate with formula Na1.5H0.5Ti3O7, with retained fibril morphology) that can be used for removal of radioactive ions and heavy metal ions from water. The structures and morphologies of the metal oxides were characterised by advanced techniques. Titania nanofibres of mixed anatase and TiO2(B) phases, pure anatase and pure TiO2(B) were obtained by calcining H-titanate nanofibres at different temperatures between 300 and 700 °C. The fibril morphology was retained after calcination, which is suitable for transmission electron microscopy (TEM) analysis. It has been found by TEM analysis that in mixed-phase structure the interfaces between anatase and TiO2(B) phases are not random contacts between the engaged crystals of the two phases, but form from the well matched lattice planes of the two phases. For instance, (101) planes in anatase and (101) planes of TiO2(B) are similar in d spaces (~0.18 nm), and they join together to form a stable interface. The interfaces between the two phases act as an one-way valve that permit the transfer of photogenerated charge from anatase to TiO2(B). This reduces the recombination of photogenerated electrons and holes in anatase, enhancing the activity for photocatalytic oxidation. Therefore, the mixed-phase nanofibres exhibited higher photocatalytic activity for degradation of sulforhodamine B (SRB) dye under ultraviolet (UV) light than the nanofibres of either pure phase alone, or the mechanical mixtures (which have no interfaces) of the two pure phase nanofibres with a similar phase composition. This verifies the theory that the difference between the conduction band edges of the two phases may result in charge transfer from one phase to the other, which results in effectively the photogenerated charge separation and thus facilitates the redox reaction involving these charges. Such an interface structure facilitates charge transfer crossing the interfaces. The knowledge acquired in this study is important not only for design of efficient TiO2 photocatalysts but also for understanding the photocatalysis process. Moreover, the fibril titania photocatalysts are of great advantage when they are separated from a liquid for reuse by filtration, sedimentation, or centrifugation, compared to nanoparticles of the same scale. The surface structure of TiO2 also plays a significant role in catalysis and photocatalysis. Four types of large surface area TiO2 nanotubes with different phase compositions (labelled as NTA, NTBA, NTMA and NTM) were synthesised from calcination and acid treatment of the H-titanate nanotubes. Using the in situ FTIR emission spectrescopy (IES), desorption and re-adsorption process of surface OH-groups on oxide surface can be trailed. In this work, the surface OH-group regeneration ability of the TiO2 nanotubes was investigated. The ability of the four samples distinctively different, having the order: NTA > NTBA > NTMA > NTM. The same order was observed for the catalytic when the samples served as photocatalysts for the decomposition of synthetic dye SRB under UV light, as the supports of gold (Au) catalysts (where gold particles were loaded by a colloid-based method) for photodecomposition of formaldehyde under visible light and for catalytic oxidation of CO at low temperatures. Therefore, the ability of TiO2 nanotubes to generate surface OH-groups is an indicator of the catalytic activity. The reason behind the correlation is that the oxygen vacancies at bridging O2- sites of TiO2 surface can generate surface OH-groups and these groups facilitate adsorption and activation of O2 molecules, which is the key step of the oxidation reactions. The structure of the oxygen vacancies at bridging O2- sites is proposed. Also a new mechanism for the photocatalytic formaldehyde decomposition with the Au-TiO2 catalysts is proposed: The visible light absorbed by the gold nanoparticles, due to surface plasmon resonance effect, induces transition of the 6sp electrons of gold to high energy levels. These energetic electrons can migrate to the conduction band of TiO2 and are seized by oxygen molecules. Meanwhile, the gold nanoparticles capture electrons from the formaldehyde molecules adsorbed on them because of gold’s high electronegativity. O2 adsorbed on the TiO2 supports surface are the major electron acceptor. The more O2 adsorbed, the higher the oxidation activity of the photocatalyst will exhibit. The last part of this thesis demonstrates two innovative applications of the titanate nanostructures. Firstly, trititanate and metastable titanate (Na1.5H0.5Ti3O7) nanofibres are used as intelligent absorbents for removal of radioactive cations and heavy metal ions, utilizing the properties of the ion exchange ability, deformable layered structure, and fibril morphology. Environmental contamination with radioactive ions and heavy metal ions can cause a serious threat to the health of a large part of the population. Treatment of the wastes is needed to produce a waste product suitable for long-term storage and disposal. The ion-exchange ability of layered titanate structure permitted adsorption of bivalence toxic cations (Sr2+, Ra2+, Pb2+) from aqueous solution. More importantly, the adsorption is irreversible, due to the deformation of the structure induced by the strong interaction between the adsorbed bivalent cations and negatively charged TiO6 octahedra, and results in permanent entrapment of the toxic bivalent cations in the fibres so that the toxic ions can be safely deposited. Compared to conventional clay and zeolite sorbents, the fibril absorbents are of great advantage as they can be readily dispersed into and separated from a liquid. Secondly, new generation membranes were constructed by using large titanate and small ã-alumina nanofibres as intermediate and top layers, respectively, on a porous alumina substrate via a spin-coating process. Compared to conventional ceramic membranes constructed by spherical particles, the ceramic membrane constructed by the fibres permits high flux because of the large porosity of their separation layers. The voids in the separation layer determine the selectivity and flux of a separation membrane. When the sizes of the voids are similar (which means a similar selectivity of the separation layer), the flux passing through the membrane increases with the volume of the voids which are filtration passages. For the ideal and simplest texture, a mesh constructed with the nanofibres 10 nm thick and having a uniform pore size of 60 nm, the porosity is greater than 73.5 %. In contrast, the porosity of the separation layer that possesses the same pore size but is constructed with metal oxide spherical particles, as in conventional ceramic membranes, is 36% or less. The membrane constructed by titanate nanofibres and a layer of randomly oriented alumina nanofibres was able to filter out 96.8% of latex spheres of 60 nm size, while maintaining a high flux rate between 600 and 900 Lm–2 h–1, more than 15 times higher than the conventional membrane reported in the most recent study.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Value Management (VM) has been proven to provide a structured framework, together with other supporting tools and techniques, that facilitate effective decision-making in many types of projects, thus achieving ‘best value’ for clients. One of the major success factors of VM in achieving better project objectives for clients is through the provision of beneficial input by multi-disciplinary team members being involved in critical decision-making discussions during the early stage of construction projects. This paper describes a doctoral research proposal based on the application of VM in design and build construction projects, especially focusing on the design stage. The research aims to study the effects of implementing VM in design and build construction projects, in particular how well the methodology addresses issues related to cost overruns resulting from poor coordination and overlooking of critical constructability issues amongst team members in construction projects in Malaysia. It is proposed that through contractors’ early involvement during the design stage, combined with the use of the VM methodology, particularly as a decision-making tool, better optimization of construction cost can be achieved, thus promoting more efficient and effective constructability. The main methods used in this research involve a thorough literature study, semi-structured interviews, and a survey of major stakeholders, a detailed case study and a VM workshop and focus group discussions involving construction professionals in order to explore and possibly develop a framework and a specific methodology for the facilitating successful application of VM within design and build construction projects.