983 resultados para Diatoms
Resumo:
Eocene diatom and silicoflagellate complexes from deposits of the Kronotsky Bay are presented. Pro tempore they are the most ancient finds of fossil phytoplankton with silica skeletons in the Northwest Pacific. More than 130 diatom species belonging to 59 genera and 24 silicoflagellate species belonging to 5 genera have been determined. Three Middle Eocene complexes (of the Lisitzinia kanayai, Lisitzinia inconspicua var. trilobata, and Praecymatosira monomembranaceae zones) and one presumably Middle-Late Eocene complex (of the zone with Rylandsia conniventa) of diatoms have been identified. For the first time a large silicoflagellate complex attributable to the Dictyocha hexacantha zone is presented. It is assumed that the complexes formed mainly in bathyal conditions at relatively high (close to sub-tropical) temperatures of surface waters.
Ingestion and clearance rates of Copepods for Diatoms 50-100 µm during Polarstern cruise ANT-XVIII/2
Resumo:
Studies of diatoms from dredge samples collected on the island slope of the Kuril-Kamchatka Trench have allowed to recognize well-preserved marine diatom assemblages corresponding to assemblages of the followed Oligocene zones: Rhizosolenia oligocaenica (subzone ''a'', 33.6-31 Ma), Cavitatus rectus (29.6-28.2 Ma), and Rocella gelida (28.2-24.0 Ma) as identified in the North Pacific zonal scale. Description of these assemblages and their complete taxonomic composition are presented. Diversity of species together with abundance and degree of preservation of diatoms and accompanying siliceous microorganisms suggests their autochtonous origin and favorable conditions of their development. Assemblages of the Early Oligocene zones Rhizosolenia oligocaenica and Cavitatus rectus recognized in sediments of the outer zone of the Lesser Kuril Ridge (submarine slope of the Shikotan Island) and on the Vityaz' submarine ridge were most probably formed under conditions of a vast shelf, while assemblage of the Late Oligocene zone Rocella gelida encountered only in the region of the Lesser Kuril Ridge formed under more deep-water conditions, presumably, over an island slope. Deepening of the basin in the region of the outer zone of the Lesser Kuril Ridge in Late Oligocene probably reflects one of stages of evolution of the Kuril-Kamchatka Trench.
Resumo:
The sustained absorption of anthropogenically released atmospheric CO2 by the oceans is modifying seawater carbonate chemistry, a process termed ocean acidification (OA). By the year 2100, the worst case scenario is a decline in the average oceanic surface seawater pH by 0.3 units to 7.75. The changing seawater carbonate chemistry is predicted to negatively affect many marine species, particularly calcifying organisms such as coralline algae, while species such as diatoms and fleshy seaweed are predicted to be little affected or may even benefit from OA. It has been hypothesized in previous work that the direct negative effects imposed on coralline algae, and the direct positive effects on fleshy seaweeds and diatoms under a future high CO2 ocean could result in a reduced ability of corallines to compete with diatoms and fleshy seaweed for space in the future. In a 6-week laboratory experiment, we examined the effect of pH 7.60 (pH predicted to occur due to ocean acidification just beyond the year 2100) compared to pH 8.05 (present day) on the lateral growth rates of an early successional, cold-temperate species assemblage dominated by crustose coralline algae and benthic diatoms. Crustose coralline algae and benthic diatoms maintained positive growth rates in both pH treatments. The growth rates of coralline algae were three times lower at pH 7.60, and a non-significant decline in diatom growth meant that proportions of the two functional groups remained similar over the course of the experiment. Our results do not support our hypothesis that benthic diatoms will outcompete crustose coralline algae under future pH conditions. However, while crustose coralline algae were able to maintain their presence in this benthic rocky reef species assemblage, the reduced growth rates suggest that they will be less capable of recolonizing after disturbance events, which could result in reduced coralline cover under OA conditions.
Resumo:
The distribution of dissolved aluminium in the West Atlantic Ocean shows a mirror image with that of dissolved silicic acid, hinting at intricate interactions between the ocean cycling of Al and Si. The marine biogeochemistry of Al is of interest because of its potential impact on diatom opal remineralisation, hence Si availability. Furthermore, the dissolved Al concentration at the surface ocean has been used as a tracer for dust input, dust being the most important source of the bio-essential trace element iron to the ocean. Previously, the dissolved concentration of Al was simulated reasonably well with only a dust source, and scavenging by adsorption on settling biogenic debris as the only removal process. Here we explore the impacts of (i) a sediment source of Al in the Northern Hemisphere (especially north of ~ 40° N), (ii) the imposed velocity field, and (iii) biological incorporation of Al on the modelled Al distribution in the ocean. The sediment source clearly improves the model results, and using a different velocity field shows the importance of advection on the simulated Al distribution. Biological incorporation appears to be a potentially important removal process. However, conclusive independent data to constrain the Al / Si incorporation ratio by growing diatoms are missing. Therefore, this study does not provide a definitive answer to the question of the relative importance of Al removal by incorporation compared to removal by adsorptive scavenging.