954 resultados para Developed applications


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The level of health care in Russia is mostly still below the western standards, but lately it has been developing quite positively. Many ICT solutions (telemedicine applications) have been developed for health care in Finland, but since the domestic market is so small, it’s necessary to expand to foreign markets to make the Finnish R&D projects more profitable. Telemedicine applications are not yet widely used in Russia, but since the health care system is going through fast changes, leapfrog effects can be expected and new modern applications and technologies will be implemented. This will open numerous business opportunities for Finnish technology developers. This thesis aims to be the first evaluation of the market and form an outlook of the health care system and telemedicine applications already utilized in Russia. The results of this study can be used for focusing further research ultimately aiming at technology implementation. The study showed that there is potential for many types of telemedicine solutions, e.g. electronic patient records and home monitoring systems; providing that further research in this field is needed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Systems biology is a new, emerging and rapidly developing, multidisciplinary research field that aims to study biochemical and biological systems from a holistic perspective, with the goal of providing a comprehensive, system- level understanding of cellular behaviour. In this way, it addresses one of the greatest challenges faced by contemporary biology, which is to compre- hend the function of complex biological systems. Systems biology combines various methods that originate from scientific disciplines such as molecu- lar biology, chemistry, engineering sciences, mathematics, computer science and systems theory. Systems biology, unlike “traditional” biology, focuses on high-level concepts such as: network, component, robustness, efficiency, control, regulation, hierarchical design, synchronization, concurrency, and many others. The very terminology of systems biology is “foreign” to “tra- ditional” biology, marks its drastic shift in the research paradigm and it indicates close linkage of systems biology to computer science. One of the basic tools utilized in systems biology is the mathematical modelling of life processes tightly linked to experimental practice. The stud- ies contained in this thesis revolve around a number of challenges commonly encountered in the computational modelling in systems biology. The re- search comprises of the development and application of a broad range of methods originating in the fields of computer science and mathematics for construction and analysis of computational models in systems biology. In particular, the performed research is setup in the context of two biolog- ical phenomena chosen as modelling case studies: 1) the eukaryotic heat shock response and 2) the in vitro self-assembly of intermediate filaments, one of the main constituents of the cytoskeleton. The range of presented approaches spans from heuristic, through numerical and statistical to ana- lytical methods applied in the effort to formally describe and analyse the two biological processes. We notice however, that although applied to cer- tain case studies, the presented methods are not limited to them and can be utilized in the analysis of other biological mechanisms as well as com- plex systems in general. The full range of developed and applied modelling techniques as well as model analysis methodologies constitutes a rich mod- elling framework. Moreover, the presentation of the developed methods, their application to the two case studies and the discussions concerning their potentials and limitations point to the difficulties and challenges one encounters in computational modelling of biological systems. The problems of model identifiability, model comparison, model refinement, model inte- gration and extension, choice of the proper modelling framework and level of abstraction, or the choice of the proper scope of the model run through this thesis.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Filtration is a widely used unit operation in chemical engineering. The huge variation in the properties of materials to be ltered makes the study of ltration a challenging task. One of the objectives of this thesis was to show that conventional ltration theories are di cult to use when the system to be modelled contains all of the stages and features that are present in a complete solid/liquid separation process. Furthermore, most of the ltration theories require experimental work to be performed in order to obtain critical parameters required by the theoretical models. Creating a good overall understanding of how the variables a ect the nal product in ltration is somewhat impossible on a purely theoretical basis. The complexity of solid/liquid separation processes require experimental work and when tests are needed, it is advisable to use experimental design techniques so that the goals can be achieved. The statistical design of experiments provides the necessary tools for recognising the e ects of variables. It also helps to perform experimental work more economically. Design of experiments is a prerequisite for creating empirical models that can describe how the measured response is related to the changes in the values of the variable. A software package was developed that provides a ltration practitioner with experimental designs and calculates the parameters for linear regression models, along with the graphical representation of the responses. The developed software consists of two software modules. These modules are LTDoE and LTRead. The LTDoE module is used to create experimental designs for di erent lter types. The lter types considered in the software are automatic vertical pressure lter, double-sided vertical pressure lter, horizontal membrane lter press, vacuum belt lter and ceramic capillary action disc lter. It is also possible to create experimental designs for those cases where the variables are totally user de ned, say for a customized ltration cycle or di erent piece of equipment. The LTRead-module is used to read the experimental data gathered from the experiments, to analyse the data and to create models for each of the measured responses. Introducing the structure of the software more in detail and showing some of the practical applications is the main part of this thesis. This approach to the study of cake ltration processes, as presented in this thesis, has been shown to have good practical value when making ltration tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Filtration is a widely used unit operation in chemical engineering. The huge variation in the properties of materials to be ltered makes the study of ltration a challenging task. One of the objectives of this thesis was to show that conventional ltration theories are di cult to use when the system to be modelled contains all of the stages and features that are present in a complete solid/liquid separation process. Furthermore, most of the ltration theories require experimental work to be performed in order to obtain critical parameters required by the theoretical models. Creating a good overall understanding of how the variables a ect the nal product in ltration is somewhat impossible on a purely theoretical basis. The complexity of solid/liquid separation processes require experimental work and when tests are needed, it is advisable to use experimental design techniques so that the goals can be achieved. The statistical design of experiments provides the necessary tools for recognising the e ects of variables. It also helps to perform experimental work more economically. Design of experiments is a prerequisite for creating empirical models that can describe how the measured response is related to the changes in the values of the variable. A software package was developed that provides a ltration practitioner with experimental designs and calculates the parameters for linear regression models, along with the graphical representation of the responses. The developed software consists of two software modules. These modules are LTDoE and LTRead. The LTDoE module is used to create experimental designs for di erent lter types. The lter types considered in the software are automatic vertical pressure lter, double-sided vertical pressure lter, horizontal membrane lter press, vacuum belt lter and ceramic capillary action disc lter. It is also possible to create experimental designs for those cases where the variables are totally user de ned, say for a customized ltration cycle or di erent piece of equipment. The LTRead-module is used to read the experimental data gathered from the experiments, to analyse the data and to create models for each of the measured responses. Introducing the structure of the software more in detail and showing some of the practical applications is the main part of this thesis. This approach to the study of cake ltration processes, as presented in this thesis, has been shown to have good practical value when making ltration tests.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Glass is a unique material with a long history. Several glass products are used daily in our everyday life, often unnoticed. Glass can be found not only in obvious applications such as tableware, windows, and light bulbs, but also in tennis rackets, windmill turbine blades, optical devices, and medical implants. The glasses used at present as implants are inorganic silica-based melt-derived compositions mainly for hard-tissue repair as bone graft substitute in dentistry and orthopedics. The degree of glass reactivity desired varies according to implantation situation and it is vital that the ion release from any glasses used in medical applications is controlled. Understanding the in vitro dissolution rate of glasses provides a first approximation of their behavior in vivo. Specific studies concerning dissolution properties of bioactive glasses have been relatively scarce and mostly concentrated to static condition studies. The motivation behind this work was to develop a simple and accurate method for quantifying the in vitro dissolution rate of highly different types of glass compositions with interest for future clinical applications. By combining information from various experimental conditions, a better knowledge of glass dissolution and the suitability of different glasses for different medical applications can be obtained. Thus, two traditional and one novel approach were utilized in this thesis to study glass dissolution. The chemical durability of silicate glasses was tested in water and TRIS-buffered solution at static and dynamic conditions. The traditional in vitro testing with a TRISbuffered solution under static conditions works well with bioactive or with readily dissolving glasses, and it is easy to follow the ion dissolution reactions. However, in the buffered solution no marked differences between the more durable glasses were observed. The hydrolytic resistance of the glasses was studied using the standard procedure ISO 719. The relative scale given by the standard failed to provide any relevant information when bioactive glasses were studied. However, the clear differences in the hydrolytic resistance values imply that the method could be used as a rapid test to get an overall idea of the biodegradability of glasses. The standard method combined with the ion concentration and pH measurements gives a better estimate of the hydrolytic resistance because of the high silicon amount released from a glass. A sensitive on-line analysis method utilizing inductively coupled plasma optical emission spectrometer and a flow-through micro-volume pH electrode was developed to study the initial dissolution of biocompatible glasses. This approach was found suitable for compositions within a large range of chemical durability. With this approach, the initial dissolution of all ions could be measured simultaneously and quantitatively, which gave a good overall idea of the initial dissolution rates for the individual ions and the dissolution mechanism. These types of results with glass dissolution were presented for the first time during the course of writing this thesis. Based on the initial dissolution patterns obtained with the novel approach using TRIS, the experimental glasses could be divided into four distinct categories. The initial dissolution patterns of glasses correlated well with the anticipated bioactivity. Moreover, the normalized surface-specific mass loss rates and the different in vivo models and the actual in vivo data correlated well. The results suggest that this type of approach can be used for prescreening the suitability of novel glass compositions for future clinical applications. Furthermore, the results shed light on the possible bioactivity of glasses. An additional goal in this thesis was to gain insight into the phase changes occurring during various heat treatments of glasses with three selected compositions. Engineering-type T-T-T curves for glasses 1-98 and 13-93 were stablished. The information gained is essential in manufacturing amorphous porous implants or for drawing of continuous fibers of the glasses. Although both glasses can be hot worked to amorphous products at carefully controlled conditions, 1-98 showed one magnitude greater nucleation and crystal growth rate than 13-93. Thus, 13-93 is better suited than 1-98 for working processes which require long residence times at high temperatures. It was also shown that amorphous and partially crystalline porous implants can be sintered from bioactive glass S53P4. Surface crystallization of S53P4, forming Na2O∙CaO∙2SiO2, was observed to start at 650°C. The secondary crystals of Na2Ca4(PO4)2SiO4, reported for the first time in this thesis, were detected at higher temperatures, from 850°C to 1000°C. The crystal phases formed affected the dissolution behavior of the implants in simulated body fluid. This study opens up new possibilities for using S53P4 to manufacture various structures, while tailoring their bioactivity by controlling the proportions of the different phases. The results obtained in this thesis give valuable additional information and tools to the state of the art for designing glasses with respect to future clinical applications. With the knowledge gained we can identify different dissolution patters and use this information to improve the tuning of glass compositions. In addition, the novel online analysis approach provides an excellent opportunity to further enhance our knowledge of glass behavior in simulated body conditions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work mathematical programming models for structural and operational optimisation of energy systems are developed and applied to a selection of energy technology problems. The studied cases are taken from industrial processes and from large regional energy distribution systems. The models are based on Mixed Integer Linear Programming (MILP), Mixed Integer Non-Linear Programming (MINLP) and on a hybrid approach of a combination of Non-Linear Programming (NLP) and Genetic Algorithms (GA). The optimisation of the structure and operation of energy systems in urban regions is treated in the work. Firstly, distributed energy systems (DES) with different energy conversion units and annual variations of consumer heating and electricity demands are considered. Secondly, district cooling systems (DCS) with cooling demands for a large number of consumers are studied, with respect to a long term planning perspective regarding to given predictions of the consumer cooling demand development in a region. The work comprises also the development of applications for heat recovery systems (HRS), where paper machine dryer section HRS is taken as an illustrative example. The heat sources in these systems are moist air streams. Models are developed for different types of equipment price functions. The approach is based on partitioning of the overall temperature range of the system into a number of temperature intervals in order to take into account the strong nonlinearities due to condensation in the heat recovery exchangers. The influence of parameter variations on the solutions of heat recovery systems is analysed firstly by varying cost factors and secondly by varying process parameters. Point-optimal solutions by a fixed parameter approach are compared to robust solutions with given parameter variation ranges. In the work enhanced utilisation of excess heat in heat recovery systems with impingement drying, electricity generation with low grade excess heat and the use of absorption heat transformers to elevate a stream temperature above the excess heat temperature are also studied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Transportation of fluids is one of the most common and energy intensive processes in the industrial and HVAC sectors. Pumping systems are frequently subject to engineering malpractice when dimensioned, which can lead to poor operational efficiency. Moreover, pump monitoring requires dedicated measuring equipment, which imply costly investments. Inefficient pump operation and improper maintenance can increase energy costs substantially and even lead to pump failure. A centrifugal pump is commonly driven by an induction motor. Driving the induction motor with a frequency converter can diminish energy consumption in pump drives and provide better control of a process. In addition, induction machine signals can also be estimated by modern frequency converters, dispensing with the use of sensors. If the estimates are accurate enough, a pump can be modelled and integrated into the frequency converter control scheme. This can open the possibility of joint motor and pump monitoring and diagnostics, thereby allowing the detection of reliability-reducing operating states that can lead to additional maintenance costs. The goal of this work is to study the accuracy of rotational speed, torque and shaft power estimates calculated by a frequency converter. Laboratory tests were performed in order to observe estimate behaviour in both steady-state and transient operation. An induction machine driven by a vector-controlled frequency converter, coupled with another induction machine acting as load was used in the tests. The estimated quantities were obtained through the frequency converter’s Trend Recorder software. A high-precision, HBM T12 torque-speed transducer was used to measure the actual values of the aforementioned variables. The effect of the flux optimization energy saving feature on the estimate quality was also studied. A processing function was developed in MATLAB for comparison of the obtained data. The obtained results confirm the suitability of this particular converter to provide accurate enough estimates for pumping applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The sustainable growth of video interactivity technologies on different platforms in the lasts years opens good prospects for augmented reality technology adoption on different markets. In the end of 2011 there was an improvement in technology which allows building the 3D model of human body. Such an improvement could be used in apparel industry. The main goal of the study is to understand the level of acceptance of augmented reality as a technology on the Russian apparel market. For a more accurate investigation, a new model accounting for augmented reality characteristics, as well as for similarities and differences between online and offline customer behavior in apparel industry, was developed. As a result of the survey, the weights of different purchase intention factors for Russian consumer were found, and the information about Russian consumers’ preferences towards the augmented reality features in apparel market, especially in fitting time, real-time interaction and fitting quality peculiarities, was presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The development of carbon capture and storage (CCS) has raised interest towards novel fluidised bed (FB) energy applications. In these applications, limestone can be utilized for S02 and/or CO2 capture. The conditions in the new applications differ from the traditional atmospheric and pressurised circulating fluidised bed (CFB) combustion conditions in which the limestone is successfully used for SO2 capture. In this work, a detailed physical single particle model with a description of the mass and energy transfer inside the particle for limestone was developed. The novelty of this model was to take into account the simultaneous reactions, changing conditions, and the effect of advection. Especially, the capability to study the cyclic behaviour of limestone on both sides of the calcination-carbonation equilibrium curve is important in the novel conditions. The significances of including advection or assuming diffusion control were studied in calcination. Especially, the effect of advection in calcination reaction in the novel combustion atmosphere was shown. The model was tested against experimental data; sulphur capture was studied in a laboratory reactor in different fluidised bed conditions. Different Conversion levels and sulphation patterns were examined in different atmospheres for one limestone type. The Conversion curves were well predicted with the model, and the mechanisms leading to the Conversion patterns were explained with the model simulations. In this work, it was also evaluated whether the transient environment has an effect on the limestone behaviour compared to the averaged conditions and in which conditions the effect is the largest. The difference between the averaged and transient conditions was notable only in the conditions which were close to the calcination-carbonation equilibrium curve. The results of this study suggest that the development of a simplified particle model requires a proper understanding of physical and chemical processes taking place in the particle during the reactions. The results of the study will be required when analysing complex limestone reaction phenomena or when developing the description of limestone behaviour in comprehensive 3D process models. In order to transfer the experimental observations to furnace conditions, the relevant mechanisms that take place need to be understood before the important ones can be selected for 3D process model. This study revealed the sulphur capture behaviour under transient oxy-fuel conditions, which is important when the oxy-fuel CFB process and process model are developed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACTGlyphosate has significant effects on the growth and development of plants when in underdoses. This work was developed to verify the effect of the application of glyphosate in underdoses in lignin synthesis and consequently decomposition of maize stover. Two experiments were conducted; the first one in a greenhouse for underdoses adjustments and the second one in the production area. The experimental design of the first trial was completely randomized with four replications. The treatments consisted in the application of the underdoses: 0, 25, 50 and 100 g ha-1 of glyphosate. In the production area, the experimental design was a randomized block with four replications, in underdoses: 0, 12.5, 25 and 50 g ha-1. The results were submitted to analysis of variance and regression. The underdoses of 25 g a.e. ha-1in a greenhouse promoted 36% increase in productivity of stover, in addition to increasing the lignin content in 16%, with no change in the unwanted growth of maize plants. In the production area, the concentration of 12.5 g a.e. ha-1 of glyphosate reduced the lignin content and the other underdoses have not changed this feature in maize plants. None of the underdoses affected the height and biomass produced by the maize plants. The highest underdose tested promoted acceleration in the decomposition of maize stover.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the present paper we discuss the development of "wave-front", an instrument for determining the lower and higher optical aberrations of the human eye. We also discuss the advantages that such instrumentation and techniques might bring to the ophthalmology professional of the 21st century. By shining a small light spot on the retina of subjects and observing the light that is reflected back from within the eye, we are able to quantitatively determine the amount of lower order aberrations (astigmatism, myopia, hyperopia) and higher order aberrations (coma, spherical aberration, etc.). We have measured artificial eyes with calibrated ametropia ranging from +5 to -5 D, with and without 2 D astigmatism with axis at 45º and 90º. We used a device known as the Hartmann-Shack (HS) sensor, originally developed for measuring the optical aberrations of optical instruments and general refracting surfaces in astronomical telescopes. The HS sensor sends information to a computer software for decomposition of wave-front aberrations into a set of Zernike polynomials. These polynomials have special mathematical properties and are more suitable in this case than the traditional Seidel polynomials. We have demonstrated that this technique is more precise than conventional autorefraction, with a root mean square error (RMSE) of less than 0.1 µm for a 4-mm diameter pupil. In terms of dioptric power this represents an RMSE error of less than 0.04 D and 5º for the axis. This precision is sufficient for customized corneal ablations, among other applications.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is no generic usability heuristics for Augmented Reality (AR) applications, thus, the aim of this thesis was to develop one. The development of the heuristics was carried out in phases. Based on a literature review, a preliminary version of the heuristics was developed, which was evaluated by four experts. As a result, six evaluation criteria were formed: 1) interaction methods and controls, 2) presentation of virtual objects, 3) relationship between virtual objects and real world, 4) information related to virtual objects, 5) suitability for the usage context and 6) physical comfort of use. The heuristics should be used with Nielsen's (1995) generic usability evaluation heuristics. The heuristics are not ready to be used as such, since it must still be tested in practice.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Traditional methods for studying the magnetic shape memory (MSM) alloys Ni-Mn-Ga include subjecting the entire sample to a uniform magnetic field or completely actuating the sample mechanically. These methods have produced significant results in characterizing the MSM effect, the properties of Ni-Mn-Ga and have pioneered the development of applications from this material. Twin boundaries and their configuration within a Ni-Mn-Ga sample are a key component in the magnetic shape memory effect. Applications that are developed require an understanding of twin boundary characteristics and, more importantly, the ability to predictably control them. Twins have such a critical role that the twinning stress of a Ni-Mn-Ga crystal is the defining characteristic that indicates its quality and significant research has been conducted to minimize this property. This dissertation reports a decrease in the twinning stress, predictably controlling the twin configuration and characterizing the dynamics of twin boundaries. A reduction of the twinning stress is demonstrated by the discovery of Type II twins within Ni-Mn-Ga which have as little as 10% of the twinning stress of traditional Type I twins. Furthermore, new methods of actuating a Ni-Mn-Ga element using localized unidirectional or bidirectional magnetic fields were developed that can predictably control the twin configuration in a localized area of a Ni-Mn-Ga element. This method of controlling the local twin configuration was used in the characterization of twin boundary dynamics. Using a localized magnetic pulse, the velocity and acceleration of a single twin boundary were measured to be 82.5 m/s and 2.9 × 107 m/s2, and the time needed for the twin boundary to nucleate and begin moving was less than 2.8 μs. Using a bidirectional magnetic field from a diametrically magnetized cylindrical magnet, a highly reproducible and controllable local twin configuration was created in a Ni-Mn-Ga element which is the fundamental pumping mechanism in the MSM micropump that has been co-invented and extensively characterized by the author.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The power is still today an issue in wearable computing applications. The aim of the present paper is to raise awareness of the power consumption of wearable computing devices in specific scenarios to be able in the future to design energy efficient wireless sensors for context recognition in wearable computing applications. The approach is based on a hardware study. The objective of this paper is to analyze and compare the total power consumption of three representative wearable computing devices in realistic scenarios such as Display, Speaker, Camera and microphone, Transfer by Wi-Fi, Monitoring outdoor physical activity and Pedometer. A scenario based energy model is also developed. The Samsung Galaxy Nexus I9250 smartphone, the Vuzix M100 Smart Glasses and the SimValley Smartwatch AW-420.RX are the three devices representative of their form factors. The power consumption is measured using PowerTutor, an android energy profiler application with logging option and using unknown parameters so it is adjusted with the USB meter. The result shows that the screen size is the main parameter influencing the power consumption. The power consumption for an identical scenario varies depending on the wearable devices meaning that others components, parameters or processes might impact on the power consumption and further study is needed to explain these variations. This paper also shows that different inputs (touchscreen is more efficient than buttons controls) and outputs (speaker sensor is more efficient than display sensor) impact the energy consumption in different way. This paper gives recommendations to reduce the energy consumption in healthcare wearable computing application using the energy model.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The monitoring and control of hydrogen sulfide (H2S) level is of great interest for a wide range of application areas including food quality control, defense and antiterrorist applications and air quality monitoring e.g. in mines. H2S is a very poisonous and flammable gas. Exposure to low concentrations of H2S can result in eye irritation, a sore throat and cough, shortness of breath, and fluid retention in the lungs. These symptoms usually disappear in a few weeks. Long-term, low-level exposure may result in fatigue, loss of appetite, headache, irritability, poor memory, and dizziness. Higher concentrations of 700 - 800 ppm tend to be fatal. H2S has a characteristic smell of rotten egg. However, because of temporary paralysis of olfactory nerves, the smelling capability at concentrations higher than 100 ppm is severely compromised. In addition, volatile H2S is one of the main products during the spoilage of poultry meat in anaerobic conditions. Currently, no commercial H2S sensor is available which can operate under anaerobic conditions and can be easily integrated in the food packaging. This thesis presents a step-wise progress in the development of printed H2S gas sensors. Efforts were made in the formulation, characterization and optimization of functional printable inks and coating pastes based on composites of a polymer and a metal salt as well as a composite of a metal salt and an organic acid. Different processing techniques including inkjet printing, flexographic printing, screen printing and spray coating were utilized in the fabrication of H2S sensors. The dispersions were characterized by measuring turbidity, surface tension, viscosity and particle size. The sensing films were characterized using X-ray photoelectron spectroscopy, X-ray diffraction, atomic force microscopy and an electrical multimeter. Thin and thick printed or coated films were developed for gas sensing applications with the aim of monitoring the H2S concentrations in real life applications. Initially, a H2S gas sensor based on a composite of polyaniline and metal salt was developed. Both aqueous and solvent-based dispersions were developed and characterized. These dispersions were then utilized in the fabrication of roll-to-roll printed H2S gas sensors. However, the humidity background, long term instability and comparatively lower detection limit made these sensors less favourable for real practical applications. To overcome these problems, copper acetate based sensors were developed for H2S gas sensing. Stable inks with excellent printability were developed by tuning the surface tension, viscosity and particle size. This enabled the formation of inkjet-printed high quality copper acetate films with excellent sensitivity towards H2S. Furthermore, these sensors showed negligible humidity effects and improved selectivity, response time, lower limit of detection and coefficient of variation. The lower limit of detection of copper acetate based sensors was further improved to sub-ppm level by incorporation of catalytic gold nano-particles and subsequent plasma treatment of the sensing film. These sensors were further integrated in an inexpensive wirelessly readable RLC-circuit (where R is resistor, L is inductor and C is capacitor). The performance of these sensors towards biogenic H2S produced during the spoilage of poultry meat in the modified atmosphere package was also demonstrated in this thesis. This serves as a proof of concept that these sensors can be utilized in real life applications.