902 resultados para Deterministic imputation
Resumo:
Sequence analysis and optimal matching are useful heuristic tools for the descriptive analysis of heterogeneous individual pathways such as educational careers, job sequences or patterns of family formation. However, to date it remains unclear how to handle the inevitable problems caused by missing values with regard to such analysis. Multiple Imputation (MI) offers a possible solution for this problem but it has not been tested in the context of sequence analysis. Against this background, we contribute to the literature by assessing the potential of MI in the context of sequence analyses using an empirical example. Methodologically, we draw upon the work of Brendan Halpin and extend it to additional types of missing value patterns. Our empirical case is a sequence analysis of panel data with substantial attrition that examines the typical patterns and the persistence of sex segregation in school-to-work transitions in Switzerland. The preliminary results indicate that MI is a valuable methodology for handling missing values due to panel mortality in the context of sequence analysis. MI is especially useful in facilitating a sound interpretation of the resulting sequence types.
Resumo:
BACKGROUND A cost-effective strategy to increase the density of available markers within a population is to sequence a small proportion of the population and impute whole-genome sequence data for the remaining population. Increased densities of typed markers are advantageous for genome-wide association studies (GWAS) and genomic predictions. METHODS We obtained genotypes for 54 602 SNPs (single nucleotide polymorphisms) in 1077 Franches-Montagnes (FM) horses and Illumina paired-end whole-genome sequencing data for 30 FM horses and 14 Warmblood horses. After variant calling, the sequence-derived SNP genotypes (~13 million SNPs) were used for genotype imputation with the software programs Beagle, Impute2 and FImpute. RESULTS The mean imputation accuracy of FM horses using Impute2 was 92.0%. Imputation accuracy using Beagle and FImpute was 74.3% and 77.2%, respectively. In addition, for Impute2 we determined the imputation accuracy of all individual horses in the validation population, which ranged from 85.7% to 99.8%. The subsequent inclusion of Warmblood sequence data further increased the correlation between true and imputed genotypes for most horses, especially for horses with a high level of admixture. The final imputation accuracy of the horses ranged from 91.2% to 99.5%. CONCLUSIONS Using Impute2, the imputation accuracy was higher than 91% for all horses in the validation population, which indicates that direct imputation of 50k SNP-chip data to sequence level genotypes is feasible in the FM population. The individual imputation accuracy depended mainly on the applied software and the level of admixture.
Resumo:
The purpose of this study is to investigate the effects of predictor variable correlations and patterns of missingness with dichotomous and/or continuous data in small samples when missing data is multiply imputed. Missing data of predictor variables is multiply imputed under three different multivariate models: the multivariate normal model for continuous data, the multinomial model for dichotomous data and the general location model for mixed dichotomous and continuous data. Subsequent to the multiple imputation process, Type I error rates of the regression coefficients obtained with logistic regression analysis are estimated under various conditions of correlation structure, sample size, type of data and patterns of missing data. The distributional properties of average mean, variance and correlations among the predictor variables are assessed after the multiple imputation process. ^ For continuous predictor data under the multivariate normal model, Type I error rates are generally within the nominal values with samples of size n = 100. Smaller samples of size n = 50 resulted in more conservative estimates (i.e., lower than the nominal value). Correlation and variance estimates of the original data are retained after multiple imputation with less than 50% missing continuous predictor data. For dichotomous predictor data under the multinomial model, Type I error rates are generally conservative, which in part is due to the sparseness of the data. The correlation structure for the predictor variables is not well retained on multiply-imputed data from small samples with more than 50% missing data with this model. For mixed continuous and dichotomous predictor data, the results are similar to those found under the multivariate normal model for continuous data and under the multinomial model for dichotomous data. With all data types, a fully-observed variable included with variables subject to missingness in the multiple imputation process and subsequent statistical analysis provided liberal (larger than nominal values) Type I error rates under a specific pattern of missing data. It is suggested that future studies focus on the effects of multiple imputation in multivariate settings with more realistic data characteristics and a variety of multivariate analyses, assessing both Type I error and power. ^
Resumo:
Objective: In this secondary data analysis, three statistical methodologies were implemented to handle cases with missing data in a motivational interviewing and feedback study. The aim was to evaluate the impact that these methodologies have on the data analysis. ^ Methods: We first evaluated whether the assumption of missing completely at random held for this study. We then proceeded to conduct a secondary data analysis using a mixed linear model to handle missing data with three methodologies (a) complete case analysis, (b) multiple imputation with explicit model containing outcome variables, time, and the interaction of time and treatment, and (c) multiple imputation with explicit model containing outcome variables, time, the interaction of time and treatment, and additional covariates (e.g., age, gender, smoke, years in school, marital status, housing, race/ethnicity, and if participants play on athletic team). Several comparisons were conducted including the following ones: 1) the motivation interviewing with feedback group (MIF) vs. the assessment only group (AO), the motivation interviewing group (MIO) vs. AO, and the intervention of the feedback only group (FBO) vs. AO, 2) MIF vs. FBO, and 3) MIF vs. MIO.^ Results: We first evaluated the patterns of missingness in this study, which indicated that about 13% of participants showed monotone missing patterns, and about 3.5% showed non-monotone missing patterns. Then we evaluated the assumption of missing completely at random by Little's missing completely at random (MCAR) test, in which the Chi-Square test statistic was 167.8 with 125 degrees of freedom, and its associated p-value was p=0.006, which indicated that the data could not be assumed to be missing completely at random. After that, we compared if the three different strategies reached the same results. For the comparison between MIF and AO as well as the comparison between MIF and FBO, only the multiple imputation with additional covariates by uncongenial and congenial models reached different results. For the comparison between MIF and MIO, all the methodologies for handling missing values obtained different results. ^ Discussions: The study indicated that, first, missingness was crucial in this study. Second, to understand the assumptions of the model was important since we could not identify if the data were missing at random or missing not at random. Therefore, future researches should focus on exploring more sensitivity analyses under missing not at random assumption.^
Resumo:
The fuzzy min–max neural network classifier is a supervised learning method. This classifier takes the hybrid neural networks and fuzzy systems approach. All input variables in the network are required to correspond to continuously valued variables, and this can be a significant constraint in many real-world situations where there are not only quantitative but also categorical data. The usual way of dealing with this type of variables is to replace the categorical by numerical values and treat them as if they were continuously valued. But this method, implicitly defines a possibly unsuitable metric for the categories. A number of different procedures have been proposed to tackle the problem. In this article, we present a new method. The procedure extends the fuzzy min–max neural network input to categorical variables by introducing new fuzzy sets, a new operation, and a new architecture. This provides for greater flexibility and wider application. The proposed method is then applied to missing data imputation in voting intention polls. The micro data—the set of the respondents’ individual answers to the questions—of this type of poll are especially suited for evaluating the method since they include a large number of numerical and categorical attributes.
Resumo:
There are many situations where input feature vectors are incomplete and methods to tackle the problem have been studied for a long time. A commonly used procedure is to replace each missing value with an imputation. This paper presents a method to perform categorical missing data imputation from numerical and categorical variables. The imputations are based on Simpson’s fuzzy min-max neural networks where the input variables for learning and classification are just numerical. The proposed method extends the input to categorical variables by introducing new fuzzy sets, a new operation and a new architecture. The procedure is tested and compared with others using opinion poll data.
Resumo:
Abstract is not available.
Resumo:
This paper presents a deterministic continuous model of proliferative cell activity. The classical series of connected compartments is revisited along with a simple mathematical treatment of two hypotheses: constant transit times and harmonic Ts. Several examples are presented to support these ideas, both taken from previous literature and recent experiences with the fish Carassius auratus, developed at the Junta de Energía Nuclear, Madrid, Spain.
Resumo:
In this paper, we examine the issue of memory management in the parallel execution of logic programs. We concentrate on non-deterministic and-parallel schemes which we believe present a relatively general set of problems to be solved, including most of those encountered in the memory management of or-parallel systems. We present a distributed stack memory management model which allows flexible scheduling of goals. Previously proposed models (based on the "Marker model") are lacking in that they impose restrictions on the selection of goals to be executed or they may require consume a large amount of virtual memory. This paper first presents results which imply that the above mentioned shortcomings can have significant performance impacts. An extension of the Marker Model is then proposed which allows flexible scheduling of goals while keeping (virtual) memory consumption down. Measurements are presented which show the advantage of this solution. Methods for handling forward and backward execution, cut and roll back are discussed in the context of the proposed scheme. In addition, the paper shows how the same mechanism for flexible scheduling can be applied to allow the efficient handling of the very general form of suspension that can occur in systems which combine several types of and-parallelism and more sophisticated methods of executing logic programs. We believe that the results are applicable to many and- and or-parallel systems.
Resumo:
This paper proposes a novel combination of artificial intelligence planning and other techniques for improving decision-making in the context of multi-step multimedia content adaptation. In particular, it describes a method that allows decision-making (selecting the adaptation to perform) in situations where third-party pluggable multimedia conversion modules are involved and the multimedia adaptation planner does not know their exact adaptation capabilities. In this approach, the multimedia adaptation planner module is only responsible for a part of the required decisions; the pluggable modules make additional decisions based on different criteria. We demonstrate that partial decision-making is not only attainable, but also introduces advantages with respect to a system in which these conversion modules are not capable of providing additional decisions. This means that transferring decisions from the multi-step multimedia adaptation planner to the pluggable conversion modules increases the flexibility of the adaptation. Moreover, by allowing conversion modules to be only partially described, the range of problems that these modules can address increases, while significantly decreasing both the description length of the adaptation capabilities and the planning decision time. Finally, we specify the conditions under which knowing the partial adaptation capabilities of a set of conversion modules will be enough to compute a proper adaptation plan.
Resumo:
(ENG) IDPSA (Integrated Deterministic-Probabilistic Safety Assessment) is a family of methods which use tightly coupled probabilistic and deterministic approaches to address respective sources of uncertainties, enabling Risk informed decision making in a consistent manner. The starting point of the IDPSA framework is that safety justification must be based on the coupling of deterministic (consequences) and probabilistic (frequency) considerations to address the mutual interactions between stochastic disturbances (e.g. failures of the equipment, human actions, stochastic physical phenomena) and deterministic response of the plant (i.e. transients). This paper gives a general overview of some IDPSA methods as well as some possible applications to PWR safety analyses (SPA)DPSA (Metodologías Integradas de Análisis Determinista-Probabilista de Seguridad) es un conjunto de métodos que utilizan métodos probabilistas y deterministas estrechamente acoplados para abordar las respectivas fuentes de incertidumbre, permitiendo la toma de decisiones Informada por el Riesgo de forma consistente. El punto de inicio del marco IDPSA es que la justificación de seguridad debe estar basada en el acoplamiento entre consideraciones deterministas (consecuencias) y probabilistas (frecuencia) para abordar la interacción mutua entre perturbaciones estocásticas (como por ejemplo fallos de los equipos, acciones humanas, fenómenos físicos estocásticos) y la respuesta determinista de la planta (como por ejemplo los transitorios). Este artículo da una visión general de algunos métodos IDSPA así como posibles aplicaciones al análisis de seguridad de los PWR.
Resumo:
Although deterministic models of the evolution of mass tourism coastal resorts predict an almost inevitable decline over time, theoretical frameworks of the evolution and restructuring policies of mature destinations should be revised to reflect the complex and dynamic way in which these destinations evolve and interact with the tourism market and global socio-economic environment. The present study examines Benidorm because its urban and tourism model and large-scale tourism supply and demand make it one of the most unique destinations on the Mediterranean coast. The investigation reveals the need to adopt theories and models that are not purely deterministic. The dialectic interplay between external factors and the internal factors inherent in this destination simultaneously reveals a complex and diverse stage of maturity and the ability of destinations to create their own future.
Resumo:
Purpose – The purpose of this paper is to present a new geometric model based on the mathematical morphology paradigm, specialized to provide determinism to the classic morphological operations. The determinism is needed to model dynamic processes that require an order of application, as is the case for designing and manufacturing objects in CAD/CAM environments. Design/methodology/approach – The basic trajectory-based operation is the basis of the proposed morphological specialization. This operation allows the definition of morphological operators that obtain sequentially ordered sets of points from the boundary of the target objects, inexistent determinism in the classical morphological paradigm. From this basic operation, the complete set of morphological operators is redefined, incorporating the concept of boundary and determinism: trajectory-based erosion and dilation, and other morphological filtering operations. Findings – This new morphological framework allows the definition of complex three-dimensional objects, providing arithmetical support to generating machining trajectories, one of the most complex problems currently occurring in CAD/CAM. Originality/value – The model proposes the integration of the processes of design and manufacture, so that it avoids the problems of accuracy and integrity that present other classic geometric models that divide these processes in two phases. Furthermore, the morphological operative is based on points sets, so the geometric data structures and the operations are intrinsically simple and efficient. Another important value that no excessive computational resources are needed, because only the points in the boundary are processed.
Resumo:
National Highway Traffic Safety Administration, Washington, D.C.
Resumo:
Mode of access: Internet.