916 resultados para Descrição larval
Larval supply and recruitment of coral reef fishes to Marine Reserves in the upper Florida Keys, USA
Resumo:
Estimates of larval supply can provide information on year-class strength that is useful for fisheries management. However, larval supply is difficult to monitor because long-term, high-frequency sampling is needed. The purpose of this study was to subsample an 11-year record of daily larval supply of blue crab (Callinectes sapidus) to determine the effect of sampling interval on variability in estimates of supply. The coefficient of variation in estimates of supply varied by 0.39 among years at a 2-day sampling interval and 0.84 at a 7-day sampling interval. For 8 of the 11 years, there was a significant correlation between mean daily larval supply and lagged fishery catch per trip (coefficient of correlation [r]=0.88). When these 8 years were subsampled, a 2-day sampling interval yielded a significant correlation with fishery data only 64.5% of the time and a 3-day sampling interval never yielded a significant correlation. Therefore, high-frequency sampling (daily or every other day) may be needed to characterize interannual variability in larval supply.
Resumo:
Nuclear RNA and DNA in muscle cell nuclei of laboratory-reared larvae of Walleye Pollock (Gadus chalcogrammus) were simultaneously measured through the use of flow cytometry for cell-cycle analysis during 2009–11. The addition of nuclear RNA as a covariate increased by 4% the classification accuracy of a discriminant analysis model that used cell-cycle, temperature, and standard length to measure larval condition, compared with a model without it. The greatest improvement, a 7% increase in accuracy, was observed for small larvae (<6.00 mm). Nuclear RNA content varied with rearing temperature, increasing as temperature decreased. There was a loss of DNA when larvae were frozen and thawed because the percentage of cells in the DNA synthesis cell-cycle phase decreased, but DNA content was stable during storage of frozen tissue.
Resumo:
Stichaeidae, commonly referred to as pricklebacks, are intertidal and subtidal fishes primarily of the North Pacific Ocean. Broad distribution in relatively inaccessible and undersampled habitats has contributed to a general lack of information about this family. In this study, descriptions of early life history stages are presented for 25 species representing 18 genera of stichaeid fishes from the northeastern Pacific Ocean, Bering Sea, and Arctic Ocean Basin. Six of these species also occur in the North Atlantic Ocean. Larval stages of 16 species are described for the first time. Additional information or illustrations intended to augment previous descriptions are provided for nine species. For most taxa, we present adult and larval distributions, descriptions of morphometric, meristic, and pigmentation characters, and species comparisons, and we provide illustrations for preflexion through postflexion or transformation stages. New counts of meristic features are reported for several species.
Resumo:
Prior to Pietsch’s (1993) revision of the genus Triglops, identification of their larvae was difficult; six species co-occur in the eastern North Pacific Ocean and Bering Sea and three co-occur in the western North Atlantic Ocean. We examined larvae from collections of the Alaska Fisheries Science Center and Atlantic Reference Centre and used updated meristic data, pigment patterns, and morphological characters to identify larvae of Triglops forficatus, T. macellus, T. murrayi, T. nybelini, T. pingeli, and T. scepticus; larvae of T. metopias, T. dorothy, T. jordani, and T. xenostethus have yet to be identified and are thus not included in this paper. Larval Triglops are characterized by a high myomere count (42–54), heavy dorsolateral pigmentation on the gut, and a pointed snout. Among species co-occurring in the eastern North Pacific Ocean, T. forficatus, T. macellus, and T. pingeli larvae are distinguished from each other by meristic counts and presence or absence of a series of postanal ventral melanophores. Triglops scepticus is differentiated from other eastern North Pacific Ocean larvae by having 0–3 postanal ventral melanophores, a large eye, and a large body depth. Among species co-occurring in the western North Atlantic Ocean, T. murrayi and T. pingeli larvae are distinguished from each other by meristic counts (vertebrae, dorsal-fin rays, and anal-fin rays once formed), number of postanal ventral melanophores, and first appearance and size of head spines. Triglops nybelini is distinguished from T. murrayi and T. pingeli by a large eye, pigment on the lateral line and dorsal midline in flexion larvae, and a greater number of dorsal-fin rays and pectoral-fin rays once formed.
Resumo:
A survey of the larval and juvenile fishes associated with the pelagic Sargassum habitat in the South Atlantic Bight and adjacent western Atlantic Ocean was conducted from July 1991 through March 1993. Fishes representing 104 taxonomic categories were identified, including reef fishes, coastal demersal, coastal pelagic, epipelagic and mesopelagic species. The most important families were Balistidae and Carangidae, each represented by 15 species. Species composition, species diversity and abundance varied both seasonally and regionally. Diversity was highest during spring through fall over the outer continental shelf and in the Gulf Stream. Abundance decreased from spring through winter and from the continental shelf into offshore waters. The numbers of fishes and fish biomass were found to be positively correlated with the wet weight of algae in most cases examined. The results of this study will be useful to fisheries managers assessing the potential impacts of commercial Sargassum harvesting in the region.
Resumo:
Serial, cyclonic, mesoscale eddies arise just north of the Charleston Bump, a topographical rise on the continental slope and Blake Plateau, and characterize the U.S. outer shelf and upper slope in the region of the Charleston Gyre. This region was transected during the winters of 2000, 2001, and 2002, and hydrographic data and larval fishes were collected. The hydrodynamics of the cyclonic eddies of the Charleston Gyre shape the distribution of larval fishes by mixing larvae from the outer continental shelf and the Gulf Stream and entraining them into the eddy circulation at the peripheral margins, the wrap-around filaments. Over all years and transects (those that intercepted eddies and those that did not), chlorophyll a concentrations, zooplankton displacement volumes, and larval fish concentrations were positively correlated. Chlorophyll a concentrations were highest in filaments that wrapped around eddies, and zooplankton displacement volumes were highest in the continental shelf–Gulf Stream–frontal mix. Overall, the concentration of all larval fishes declined from inshore to offshore with highest concentrations occurring over the outer shelf. Collections produced larvae from 91 fish families representing continental shelf and oceanic species. The larvae of shelf-spawned fishes—Atlantic Menhaden Brevoortia tyrannus, Round Herring Etrumeus teres, Spot Leiostomus xanthurus, and Atlantic Croaker Micropogonias undulatus—were most concentrated over the outer shelf and in the continental shelf–Gulf Stream–frontal mix. The larvae of ocean-spawned fishes—lanternfishes, bristlemouths, and lightfishes—were more evenly dispersed in low concentrations across the outer shelf and upper slope, the highest typically in the Gulf Stream and Sargasso Sea, except for lightfishes that were highest in the continental shelf–Gulf Stream–frontal mix. Detrended correspondence analysis rendered groups of larval fishes that corresponded with a gradient between the continental shelf and Gulf Stream and Sargasso Sea. Eddies propagate northeastward with a residence time on the outer shelf and upper slope of ∼1 month, the same duration as the larval period of most fishes. The pelagic habitat afforded by eddies and fronts of the Charleston Gyre region can be exploited as nursery areas for feeding and growth of larval fishes within the southeastern Atlantic continental shelf ecosystem of the U.S. Eddies, and the nursery habitat they provide, translocate larvae northeastward.
Resumo:
The Charleston Gyre region is characterized by continuous series of cyclonic eddies that propagate northeastwards before decaying or coalescing with the Gulf Stream south of Cape Hatteras, NC, USA. Over 5 d, chlorophyll-a concentration, zooplankton displacement volume, and zooplankton composition and abundance changed as the eddy moved to the northeast. Surface chlorophyll-a concentration decreased, and zooplankton displacement remained unchanged as the eddy propagated. Zooplankton taxa known to be important dietary constituents of larval fish increased in concentration as the eddy propagated. The concurrent decrease in chlorophyll-a concentration and static zooplankton displacement volume can be explained by initial stimulation of chlorophyll-a concentration by upwelling and nutrient enrichment near the eddy core and to possible grazing as zooplankton with short generation times and large clutch sizes increased in concentration. The zooplankton community did not change significantly within the 5 d that the eddy was tracked, and there was no indication of succession. Mesoscale eddies of the region are dynamic habitats as eddies propagate northeastwards at varying speeds within monthly periods. The abundance of zooplankton important to the diets of larval fish indicates that the region can provide important pelagic nursery habitat for larval fish off the southeast coast of the United States. A month of feeding and growth is more than half the larval duration of most fish spawned over the continental shelf of the southeastern United States in winter.
Resumo:
Larval development of the sidestriped shrimp (Pandalopsis dispar) is described from larvae reared in the laboratory. The species has five zoeal stages and one postlarval stage. Complete larval morphological characteristics of the species are described and compared with those of related species of the genus. The number of setae on the margin of the telson in the first and second stages is variable: 11+12, 12+12, or 11+11. Of these, 11+12 pairs are most common. The present study confirms that what was termed the fifth stage in the original study done by Berkeley in 1930 was the sixth stage and that the fifth stage in the Berkeley’s study is comparable to the sixth stage that is described in the present study. The sixth stage has a segmented inner flagellum of the antennule and fully developed pleopods with setae. The ability to distinguish larval stages of P. dispar from larval stages of other plankton can be important for studies of the effect of climate change on marine communities in the Northeast Pacific and for marine resource management strategies.
Resumo:
Life history aspects of larval and, mainly, juvenile spotted seatrout (Cynoscion nebulosus) were studied in Florida Bay, Everglades National Park, Florida. Collections were made in 1994−97, although the majority of juveniles were collected in 1995. The main objective was to obtain life history data to eventually develop a spatially explicit model and provide baseline data to understand how Everglades restoration plans (i.e. increased freshwater flows) could influence spotted seatrout vital rates. Growth of larvae and juveniles (<80 mm SL) was best described by the equation loge standard length = –1.31 + 1.2162 (loge age). Growth in length of juveniles (12–80 mm SL) was best described by the equation standard length = –7.50 + 0.8417 (age). Growth in wet weight of juveniles (15–69 mm SL) was best described by the equation loge wet-weight = –4.44 + 0.0748 (age). There were no significant differences in juvenile growth in length of spotted seatrout in 1995 between three geographical subdivisions of Florida Bay: central, western, and waters adjacent to the Gulf of Mexico. We found a significant difference in wet-weight for one of six cohorts categorized by month of hatchdate in 1995, and a significant difference in length for another cohort. Juveniles (i.e. survivors) used to calculate weekly hatchdate distributions during 1995 had estimated spawning times that were cyclical and protracted, and there was no correlation between spawning and moon phase. Temperature influenced otolith increment widths during certain growth periods in 1995. There was no evidence of a relationship between otolith growth rate and temperature for the first 21 increments. For increments 22–60, otolith growth rates decreased with increasing age and the extent of the decrease depended strongly in a quadratic fashion on the temperature to which the fish was exposed. For temperatures at the lower and higher range, increment growth rates were highest. We suggest that this quadratic relationship might be influenced by an environmental factor other than temperature. There was insufficient information to obtain reliable inferences on the relationship of increment growth rate to salinity.
Resumo:
A developmental series of larval and pelagic juvenile pygmy rockfish (Sebastes wilsoni) from central California is illustrated and described. Sebastes wilsoni is a non- commercially, but ecologically, important rockfish, and the ability to differentiate its young stages will aid researchers in population abundance studies. Pigment patterns, meristic characters, morphometric measurements, and head spination were recorded from specimens that ranged from 8.1 to 34.4 mm in standard length. Larvae were identified initially by meristic characters and the absence of ventral and lateral midline pigment. Pelagic juveniles developed a prominent pigment pattern of three body bars that did not extend to the ventral surface. Species identification was confirmed subsequently by using mitochondrial sequence data of four representative specimens of various sizes. As determined from the examination of otoliths, the growth rate of larval and pelagic juvenile pygmy rockfish was 0.28 mm/day, which is relatively slow in comparison to the growth rate of other species of Sebastes. These data will aid researchers in determining species abundance.