972 resultados para Delay in the tetrad dissociation
Resumo:
The 6loWPAN (the light version of IPv6) and RPL (routing protocol for low-power and lossy links) protocols have become de facto standards for the Internet of Things (IoT). In this paper, we show that the two native algorithms that handle changes in network topology – the Trickle and Neighbor Discovery algorithms – behave in a reactive fashion and thus are not prepared for the dynamics inherent to nodes mobility. Many emerging and upcoming IoT application scenarios are expected to impose real-time and reliable mobile data collection, which are not compatible with the long message latency, high packet loss and high overhead exhibited by the native RPL/6loWPAN protocols. To solve this problem, we integrate a proactive hand-off mechanism (dubbed smart-HOP) within RPL, which is very simple, effective and backward compatible with the standard protocol. We show that this add-on halves the packet loss and reduces the hand-off delay dramatically to one tenth of a second, upon nodes’ mobility, with a sub-percent overhead. The smart-HOP algorithm has been implemented and integrated in the Contiki 6LoWPAN/RPL stack (source-code available on-line mrpl: smart-hop within rpl, 2014) and validated through extensive simulation and experimentation.
Resumo:
To study the cercaria-schistosomulum transformation in vivo, underthe influence of an antischistosomal compound (oxamniquine), a model using cercarial infections into the abdominal cavity of mice was chosen. This procedure provided easy and reproducible recoveries of larvae from peritoneal washings with appropriate solutions for a long time (30 to 180 min) after inoculation. The results show that high doses of oxamniquine (given intramuscularly one hour before the infection) produce a marked delay in the kinetics of the cercaria-schistosomulum transformation. Cercariae, tail-less cercarial bodies and schistosomula were recovered from the peritoneal cavity ofdrug treated mice in numbers significantly different from those recovered from untreated mice.
Resumo:
One of the major challenges in the development of an immersive system is handling the delay between the tracking of the user’s head position and the updated projection of a 3D image or auralised sound, also called end-to-end delay. Excessive end-to-end delay can result in the general decrement of the “feeling of presence”, the occurrence of motion sickness and poor performance in perception-action tasks. These latencies must be known in order to provide insights on the technological (hardware/software optimization) or psychophysical (recalibration sessions) strategies to deal with them. Our goal was to develop a new measurement method of end-to-end delay that is both precise and easily replicated. We used a Head and Torso simulator (HATS) as an auditory signal sensor, a fast response photo-sensor to detect a visual stimulus response from a Motion Capture System, and a voltage input trigger as real-time event. The HATS was mounted in a turntable which allowed us to precisely change the 3D sound relative to the head position. When the virtual sound source was at 90º azimuth, the correspondent HRTF would set all the intensity values to zero, at the same time a trigger would register the real-time event of turning the HATS 90º azimuth. Furthermore, with the HATS turned 90º to the left, the motion capture marker visualization would fell exactly in the photo-sensor receptor. This method allowed us to precisely measure the delay from tracking to displaying. Moreover, our results show that the method of tracking, its tracking frequency, and the rendering of the sound reflections are the main predictors of end-to-end delay.
Resumo:
ABSTRACT Leaves have a variety of morphological and anatomical characters mainly influenced by climatic, edaphic and biotic factors. The aim of this study was to describe the anatomical leaf traits of Qualea parviflora from three phytophysiognomies. The studied phytophysiognomies were Amazon Savannah on rocky outcrops (ASR), Transition Rupestrian Cerrado (TRC), and Cerradão (CDA). Freehand sections of the leaf blade were made and stained with 0.5% astra blue and with basic fuchsin. From the adaxial and abaxial leaf surface, freehand paradermal sections were made for epidermis analysis. The Jeffrey´s method, with modifications, was used in the epidermis dissociation process. The samples from the TRC phytophysiognomy had relatively smaller ordinary epidermal cells, higher abundance of trichomes, and mesophyll with few intercellular spaces, in comparison to the other phytophysiognomies. The leaves from the ASR phytophysiognomy had higher stomatal index (SI = 21.02), and five to six layers of sclerenchyma surrounding the midrib vascular bundle. The secondary vascular bundles had thicker cell walls and the bundle sheath extended up to the epidermal tissue of both leaf sides. Leaves from the CDA phytophysiognomy had mesomorphic environmental traits, such as a thinner cuticle. It is concluded that trees from ASR and TRC phytophysiognomies have xeromorphic traits following the environmental conditions where they occur.
Resumo:
This is the report of a case of fetal tachyarrhythmia with 1:1 atrioventricular conduction detected by pre-natal echocardiography in a fetus at 25-weeks gestation. Adenosine infusion via cordocentesis was performed as a diagnostic test to differentiate between atrioventricular nodal reentrant supraventricular tachyarrhythmia and atrial flutter. After infusion, transient 2:1 atrioventricular dissociation was obtained and the diagnosis of atrial flutter was made. Transplacental therapy with digoxin and amiodarone was then successfully used.
Resumo:
Summary : The hypothalamus represents less than 1 % of the total volume of the brain tissue, yet it plays a crucial role in endocrine regulations. Puberty is defined as a process leading to physical, sexual and psychosocial maturation. The hypothalamus is central to this process, via the activation of GnRH neurons. Pulsatile GnRH secretion, minimal during childhood, increases with the onset of puberty. The primary function of GnRH is to regulate the growth, development and function of testes in boys and ovaries in girls, by stimulating the pituitary gland secretion of luteinizing hormone (LH) and follicle-stimulating hormone (FSH). Several factors contribute to the timing of puberty, including sex and ethnicity, genetics, dietary intake and energy expenditure. Kisspeptins constitute a family of small peptides arising from the proteolytic cleavage of metastin, a peptide with 54 amino acids initially purified from human placenta. These kisspeptins were the subject of much attention following their discovery because of their antimetastatic properties, but it was more recently that their determining role in the reproductive function was demonstrated. It was shown that kisspeptins are ligands of a receptor, GPR54, whose natural inactivating mutation in humans, or knockout in the mouse, lead to infertility. GnRH neurons play a pivotal role in the central regulation of fertility. Kisspeptin greatly increases GnRH release and GnRH neuron firing activity, but the neurobiological mechanisms for these actions are unknown. Gprotein-coupled receptor 54, the receptor for kisspeptin, is expressed by GnRH neurons as well as other hypothalamic neurons, suggesting that both direct and indirect effects are possible. In the first part of my thesis, we investigated a possible connection between the acceleration of sexual development induced by leptin and hypothalamic metastin neurons. However, the data generated by our preliminary experiments confirmed that the commercially available antibodies are non-specific. This finding constituted a major drawback for our studies, which relied heavily upon the neuroanatomical study of the hypothalamic metastinergic pathways to elucidate their sensitivity to exogenous leptin. Therefore, we decided to postpone any further in vivo experiment until a better antibody becomes available, and focused on in vitro studies to better understand the mechanisms of action of kisspeptins in the modulation of the activity of GnRH neurons. We used two GnRH-expressing neuronal cell lines to investigate the cellular and molecular mechanisms of action of metastin in GnRH neurons. We demonstrated that kisspeptin induces an early activation of the MAP kinase intracellular signaling pathway in both cell lines, whereas the SAP/JNK or the Akt pathways were unaffected. Moreover, we found an increase in GnRH mRNA levels after 6h of metastin stimulation. Thus, we can conclude that kisspeptin regulates GnRH neurons both at the secretion and the gene expression levels. The MAPK pathway is the major pathway activated by metastin in GnRH expressing neurons. Taken together, these data provide the first mechanism of action of kisspeptin on GnRH neurons. Résumé : L'hypothalamus est une zone située au centre du cerveau, dont il représente moins de 1 du volume total. La puberté est la période de transition entre l'enfance et l'age adulte, qui s'accompagne de transformations somatiques, psychologiques, métaboliques et hormonales conduisant à la possibilité de procréer. La fonction principale de la GnRH est la régulation de la croissance, du développement et de la fonction des testicules chez les hommes, et des ovaires chez les femmes en stimulant la sécrétion de l'hormone lutéinisante (LH) et de l'hormone folliculostimulante (FSH) par la glande hypophysaire. Plusieurs facteurs contribuent au déclanchement de la puberté, y compris le sexe et l'appartenance ethnique, la génétique, l'apport alimentaire et la dépense énergétique. Les Kisspeptines constituent une famille de peptides résultant de la dissociation proteolytique de la métastine, un peptide de 54 acides aminés initialement purifié à partir de placenta humain. Ces kisspeptines ont fait l'objet de beaucoup d'attention à la suite de leur découverte en raison de leurs propriétés anti-metastatiques, et c'est plus récemment que leur rôle déterminant dans la fonction reproductive a été démontré. Les kisspeptines sont des ligands du récepteur GPR54, dont la mutation inactivatrice chez l'homme, ou le knockout chez la souris, conduisent à l'infertilité par hypogonadisme hypogonadotrope. Les neurones à GnRH jouent un rôle central dans le règlement des fonctions reproductrices et la kisspeptine stimule l'activité des neurones à GnRH et la libération de GnRH par ces neurones. Toutefois, les mécanismes neurobiologiques de ces actions ne sont pas connus. Dans la première partie de ma thèse, nous avons étudié le lien potentiel entre l'accélération du développement sexuel induite par la leptine et les neurones hypothalamiques à metastine. Les données générées dans cette première série d'expériences ont malheureusement confirmé que les anticorps anti-metastine disponibles dans le commerce sont aspécifiques. Ceci a constitué un inconvénient majeur pour nos études, qui devaient fortement s'appuyer sur l' étude neuroanatomique des neurones hypothalamiques à metastine pour évaluer leur sensibilité à la leptine exogène. Nous avons donc décidé de focaliser nos travaux sur une étude in vitro des mécanismes d'action de la kisspeptine pour moduler l'activité des neurones à GnRH. Nous avons utilisé deux lignées de cellules neuronales exprimant la GnRH pour étudier les mécanismes d'action cellulaires et moléculaires de la metastine dans des neurones. Nous avons ainsi pu démontrer que la kisspeptine induit une activation précoce de la voie f de signalisation de la MAP kinase dans les deux lignées cellulaires, alors que nous n'avons observé aucune activation de la voie de signalisation de la P13 Kinase et de la SAP/JNK. Nous avons en outre démontré une augmentation de l'expression de la GnRH par la stimulation avec la Kisspeptine. L'ensemble de ces données contribue à élucider le mécanisme d'action avec lequel la kisspeptine agit dans les neurones à GnRH, en démontrant un effet sur l'expression génique de la GnRH. Nous pouvons également conclure que la voie de la MAPK est la voie principale activée par la metastine dans les neurones exprimant la GnRH.
Resumo:
Using the framework of Desmet and Rossi-Hansberg (forthcoming), we present a model of spatial takeoff that is calibrated using spatially-disaggregated occupational data for England in c.1710. The model predicts changes in the spatial distribution of agricultural and manufacturing employment which match data for c.1817 and 1861. The model also matches a number of aggregate changes that characterise the first industrial revolution. Using counterfactual geographical distributions, we show that the initial concentration of productivity can matter for whether and when an industrial takeoff occurs. Subsidies to innovation in either sector can bring forward the date of takeoff while subsidies to the use of land by manufacturing firms can significantly delay a takeoff because it decreases spatial concentration of activity.
Resumo:
Using the framework of Desmet and Rossi-Hansberg (forthcoming), we present a model of spatial takeoff that is calibrated using spatially-disaggregated occupational data for England in c.1710. The model predicts changes in the spatial distribution of agricultural and manufacturing employment which match data for c.1817 and 1861. The model also matches a number of aggregate changes that characterise the first industrial revolution. Using counterfactual geographical distributions, we show that the initial concentration of productivity can matter for whether and when an industrial takeoff occurs. Subsidies to innovation in either sector can bring forward the date of takeoff while subsidies to the use of land by manufacturing firms can significantly delay a takeoff because it decreases spatial concentration of activity.
Resumo:
den Dunnen et al. [den Dunnen, W.F.A., Brouwer, W.H., Bijlard, E., Kamphuis, J., van Linschoten, K., Eggens-Meijer, E., Holstege, G., 2008. No disease in the brain of a 115-year-old woman. Neurobiol. Aging] had the opportunity to follow up the cognitive functioning of one of the world's oldest woman during the last 3 years of her life. They performed two neuropsychological evaluations at age 112 and 115 that revealed a striking preservation of immediate recall abilities and orientation. In contrast, working memory, retrieval from semantic memory and mental arithmetic performances declined after age 112. Overall, only a one-point decrease of MMSE score occurred (from 27 to 26) reflecting the remarkable preservation of cognitive abilities. The neuropathological assessment showed few neurofibrillary tangles (NFT) in the hippocampal formation compatible with Braak staging II, absence of amyloid deposits and other types of neurodegenerative lesions as well as preservation of neuron numbers in locus coeruleus. This finding was related to a striking paucity of Alzheimer disease (AD)-related lesions in the hippocampal formation. The present report parallels the early descriptions of rare "supernormal" centenarians supporting the dissociation between brain aging and AD processes. In conjunction with recent stereological analyses in cases aged from 90 to 102 years, it also points to the marked resistance of the hippocampal formation to the degenerative process in this age group and possible dissociation between the occurrence of slight cognitive deficits and development of AD-related pathologic changes in neocortical areas. This work is discussed in the context of current efforts to identify the biological and genetic parameters of human longevity.
Resumo:
L-Type Ca(2+) and K(ATP) Channels in Pacing-Induced Cardioprotection. AIMS: The L-type Ca(2+) channel, the sarcolemmal (sarcK(ATP)), and mitochondrial K(ATP) (mitoK(ATP)) channels are involved in myocardial preconditioning. We aimed at determining to what extent these channels can also participate in pacing-induced cardioprotection. METHODS: Hearts of 4-day-old chick embryos were paced in ovo during 12 hour using asynchronous intermittent ventricular stimulation at 110% of the intrinsic rate. Sham operated and paced hearts were then submitted in vitro to anoxia (30 minutes) and reoxygenation (60 minutes). These hearts were exposed to L-type Ca(2+) channel agonist Bay-K-8644 (BAY-K) or blocker verapamil, nonselective K(ATP) channel antagonist glibenclamide (GLIB), mitoK(ATP) channel agonist diazoxide (DIAZO), or antagonist 5-hydroxydecanoate. Electrocardiogram, electromechanical delay (EMD) reflecting excitation-contraction (E-C) coupling, and contractility were determined. RESULTS: Under normoxia, heart rate, QT duration, conduction, EMD, and ventricular shortening were similar in sham and paced hearts. During reoxygenation, arrhythmias ceased earlier and ventricular EMD recovered faster in paced hearts than in sham hearts. In sham hearts, BAY-K (but not verapamil), DIAZO (but not 5-hydroxydecanoate) or GLIB accelerated recovery of ventricular EMD, reproducing the pacing-induced protection. By contrast, none of these agents further ameliorated recovery of the paced hearts. CONCLUSION: The protective effect of chronic asynchronous pacing at near physiological rate on ventricular E-C coupling appears to be associated with subtle activation of L-type Ca(2+) channel, inhibition of sarcK(ATP) channel, and/or opening of mitoK(ATP) channel.
Resumo:
The diagnosis of inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), continues to present difficulties due to unspecific symptoms and limited test accuracies. We aimed to determine the diagnostic delay (time from first symptoms to IBD diagnosis) and to identify associated risk factors. A total of 1591 IBD patients (932 CD, 625 UC, 34 indeterminate colitis) from the Swiss IBD cohort study (SIBDCS) were evaluated. The SIBDCS collects data on a large sample of IBD patients from hospitals and private practice across Switzerland through physician and patient questionnaires. The primary outcome measure was diagnostic delay. Diagnostic delay in CD patients was significantly longer compared to UC patients (median 9 versus 4 months, P < 0.001). Seventy-five percent of CD patients were diagnosed within 24 months compared to 12 months for UC and 6 months for IC patients. Multivariate logistic regression identified age <40 years at diagnosis (odds ratio [OR] 2.15, P = 0.010) and ileal disease (OR 1.69, P = 0.025) as independent risk factors for long diagnostic delay in CD (>24 months). In UC patients, nonsteroidal antiinflammatory drug (NSAID intake (OR 1.75, P = 0.093) and male gender (OR 0.59, P = 0.079) were associated with long diagnostic delay (>12 months). Whereas the median delay for diagnosing CD, UC, and IC seems to be acceptable, there exists a long delay in a considerable proportion of CD patients. More public awareness work needs to be done in order to reduce patient and doctor delays in this target population.
Resumo:
Aim: The diagnosis of inflammatory bowel disease (IBD), comprising Crohn's disease (CD) and ulcerative colitis (UC), continues to present difficulties due to unspecific symptoms and limited test accuracies. We aimed to determine the diagnostic delay (time from first symptoms to IBD diagnosis) and to identify associated risk factors in a national cohort in Switzerland.¦Materials and Methods: A total of 1,591 IBD patients (932 CD, 625 UC, 34 indeterminate colitis) from the Swiss IBD cohort study (SIBDCS) were evaluated. The SIBDCS collects data on a large sample of IBD patients from hospitals and private practice across Switzerland through physician and patient questionnaires. The primary outcome measure was the diagnostic delay.¦Results: Diagnostic delay in CD patients was significantly longer compared to UC patients (median 9 vs. 4 months, P < 0.001). Seventy-five percent of CD patients were diagnosed within 24 months compared to 12 months for UC and 6 months for IC patients. Multivariate logistic regression identified age <40 years at diagnosis (OR 2.15, P = 0.010) and ileal disease (OR 1.69, P = 0.025) as independent risk factors for long diagnostic delay in CD (>24 months). A trend for long diagnostic delay (>12 months) was associated with NSAID intake (OR 1.75, P = 0.093) and male gender (OR 0.59, P = 0.079) in UC patients.¦Conclusions: Whereas the median delay for diagnosing CD, UC, and IC seems to be acceptable, there exists a long delay in a considerable proportion of CD patients. More public awareness work needs to be done in order to reduce patient's and doctor's delay in this target population.
Resumo:
BACKGROUND: Half of the patients with end-stage heart failure suffer from persistent atrial fibrillation (AF). Atrial kick (AK) accounts for 10-15% of the ejection fraction. A device restoring AK should significantly improve cardiac output (CO) and possibly delay ventricular assist device (VAD) implantation. This study has been designed to assess the mechanical effects of a motorless pump on the right chambers of the heart in an animal model. METHODS: Atripump is a dome-shaped biometal actuator electrically driven by a pacemaker-like control unit. In eight sheep, the device was sutured onto the right atrium (RA). AF was simulated with rapid atrial pacing. RA ejection fraction (EF) was assessed with intracardiac ultrasound (ICUS) in baseline, AF and assisted-AF status. In two animals, the pump was left in place for 4 weeks and then explanted. Histology examination was carried out. The mean values for single measurement per animal with +/-SD were analysed. RESULTS: The contraction rate of the device was 60 per min. RA EF was 41% in baseline, 7% in AF and 21% in assisted-AF conditions. CO was 7+/-0.5 l min(-1) in baseline, 6.2+/-0.5 l min(-1) in AF and 6.7+/-0.5 l min(-1) in assisted-AF status (p<0.01). Histology of the atrium in the chronic group showed chronic tissue inflammation and no sign of tissue necrosis. CONCLUSIONS: The artificial muscle restores the AK and improves CO. In patients with end-stage cardiac failure and permanent AF, if implanted on both sides, it would improve CO and possibly delay or even avoid complex surgical treatment such as VAD implantation.
Resumo:
With aging, bimanual movements are performed with increased cerebral activity in frontal and parietal areas. In contrast, motor switching is poorly documented and is expected to engage increasing resources in the elderly. In this study, spontaneous electroencephalographic activity (EEG) was recorded while 39 young participants (YP) and 37 elderly (EP) performed motor transitions from unimanual tapping to symmetric bimanual tapping (= Activation), and opposite (= Inhibition). We measured the delay of switching using the mean and standard deviation of transition time (meanTT and sdTT). Task-related power (TRPow) in alpha frequency band (8-12Hz) was used to measure electro-cortical changes, negative values corresponding to increased cerebral activity. A balance index (BI) was computed between frontal and parietal regions, values non-significantly different from "zero" representing a comparable level of cerebral activity in these regions. The results reveal higher sdTT 1) in EP compared to YP in both transitions, 2) in Activation compared to Inhibition in both groups. TRPow tends to reach greater negative values (p=0.052) in EP compared to YP in both tapping modes and both motor transitions. Furthermore, the results show more negative TRPow 1) in both motor transitions compared to the tapping movements and 2) in frontal region for YP compared to EP during Inhibition only. BI values differ significantly from "zero" for YP in Inhibition only. In conclusion, motor transitions are more variable and tend to be resource-consuming in the elderly. Moreover, the cerebral activity spreading in EP characterized by similar level of activity between frontal and parietal regions suggest reduced capacity to recruit specialized neural mechanisms during motor inhibition.