910 resultados para Deicing chemicals.


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Binding of hydrophobic chemicals to colloids such as proteins or lipids is difficult to measure using classical microdialysis methods due to low aqueous concentrations, adsorption to dialysis membranes and test vessels, and slow kinetics of equilibration. Here, we employed a three-phase partitioning system where silicone (polydimethylsiloxane, PDMS) serves as a third phase to determine partitioning between water and colloids and acts at the same time as a dosing device for hydrophobic chemicals. The applicability of this method was demonstrated with bovine serum albumin (BSA). Measured binding constants (K(BSAw)) for chlorpyrifos, methoxychlor, nonylphenol, and pyrene were in good agreement with an established quantitative structure-activity relationship (QSAR). A fifth compound, fluoxypyr-methyl-heptyl ester, was excluded from the analysis because of apparent abiotic degradation. The PDMS depletion method was then used to determine partition coefficients for test chemicals in rainbow trout (Oncorhynchus mykiss) liver S9 fractions (K(S9w)) and blood plasma (K(bloodw)). Measured K(S9w) and K(bloodw) values were consistent with predictions obtained using a mass-balance model that employs the octanol-water partition coefficient (K(ow)) as a surrogate for lipid partitioning and K(BSAw) to represent protein binding. For each compound, K(bloodw) was substantially greater than K(S9w), primarily because blood contains more lipid than liver S9 fractions (1.84% of wet weight vs 0.051%). Measured liver S9 and blood plasma binding parameters were subsequently implemented in an in vitro to in vivo extrapolation model to link the in vitro liver S9 metabolic degradation assay to in vivo metabolism in fish. Apparent volumes of distribution (V(d)) calculated from the experimental data were similar to literature estimates. However, the calculated binding ratios (f(u)) used to relate in vitro metabolic clearance to clearance by the intact liver were 10 to 100 times lower than values used in previous modeling efforts. Bioconcentration factors (BCF) predicted using the experimental binding data were substantially higher than the predicted values obtained in earlier studies and correlated poorly with measured BCF values in fish. One possible explanation for this finding is that chemicals bound to proteins can desorb rapidly and thus contribute to metabolic turnover of the chemicals. This hypothesis remains to be investigated in future studies, ideally with chemicals of higher hydrophobicity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study summarises all the accessible data on old German chemical weapons dumped in the Baltic Sea. Mr. Goncharov formulated a concept of ecological impact evaluation of chemical warfare agents (CWA) on the marine environment and structured a simulation model adapted to the specific character of the hydrological condition and hydrobiological subjects of the Bornholm Deep. The mathematical model he has created describes the spreading of contaminants by currents and turbulence in the near bottom boundary layer. Parameters of CWA discharge through corrosion of canisters were given for various kinds of bottom sediments with allowance for current velocity. He created a method for integral estimations and a computer simulation model and completed a forecast for CWA "Mustard", which showed that in normal hydrometeorological conditions there are local toxic plumes drifting along the bottom for a distance of up to several kilometres. With storm winds the toxic plumes from separate canisters interflow and lengthen and can reach fishery areas near Bornholm Island. When salt water from the North Sea flows in, the length of toxic zones can increase up to and over 100 kilometres and toxic water masses can spread into the northern Baltic. On this basis, Mr. Goncharov drew up recommendations to reduce dangers for human ecology and proposed the creation of a special system for the forecasting and remote sensing of the environmental conditions of CWA burial places.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In zebrafish, two isoforms of the aromatase gene exist, namely cyp19a1 and cyp19a2, expressed predominantly in the gonads and brain, respectively. In this study, we focus on characterizing the specificity of antibodies against the aromatase isoforms, and on (xeno)estrogen-induced changes of individual cyp19a2 mRNA concentrations in the brains of adult male zebrafish. Among three polyclonal antibodies studied, the one against CYP19A2 was found to be specific in Western blots and immunohistochemistry. Real-time RT-PCR analyses revealed strong interindividual variation of cyp19a2 levels in the brains of adult male zebrafish. After a three-week-exposure to (xeno)estrogens, mean values of cyp19a2 mRNA levels tended to increase, with significant induction at 200 ng 17beta-estradiol/L, but interindividual variation of cyp19a2 expression was maintained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucocorticoids play an essential role in the regulation of key physiological processes, including immunomodulation, brain function, energy metabolism, electrolyte balance and blood pressure. Exposure to naturally occurring compounds or industrial chemicals that impair glucocorticoid action may contribute to the increasing incidence of cognitive deficits, immune disorders and metabolic diseases. Potentially, "glucocorticoid disruptors" can interfere with various steps of hormone action, e.g. hormone synthesis, binding to plasma proteins, delivery to target cells, pre-receptor regulation of the ratio of active versus inactive hormones, glucocorticoid receptor (GR) function, or export and degradation of glucocorticoids. Several recent studies indicate that such chemicals exist and that some of them can cause multiple toxic effects by interfering with different steps of hormone action. For example, increasing evidence suggests that organotins disturb glucocorticoid action by altering the function of factors that regulate the expression of 11beta-hydroxysteroid dehydrogenase (11beta-HSD) pre-receptor enzymes, by direct inhibition of 11beta-HSD2-dependent inactivation of glucocorticoids, and by blocking GR activation. These observations emphasize on the complexity of the toxic effects caused by such compounds and on the need of suitable test systems to assess their effects on each relevant step.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many natural and synthetic compounds present in the environment exert a number of adverse effects on the exposed organisms, leading to endocrine disruption, for which they were termed endocrine disrupting chemicals (EDCs). A decrease in reproduction success is one of the most well-documented signs of endocrine disruption in fish. Estrogens are steroid hormones involved in the control of important reproduction-related processes, including sexual differentiation, maturation and a variety of others. Careful spatial and temporal balance of estrogens in the body is crucial for proper functioning. At the final step of estrogen biosynthesis, cytochrome P450 aromatase, encoded by the cyp19 gene, converts androgens into estrogens. Modulation of aromatase CYP19 expression and function can dramatically alter the rate of estrogen production, disturbing the local and systemic levels of estrogens. In the present review, the current progress in CYP19 characterization in teleost fish is summarized and the potential of several classes of EDCs to interfere with CYP19 expression and activity is discussed. Two cyp19 genes are present in most teleosts, cyp19a and cyp19b, primarily expressed in the ovary and brain, respectively. Both aromatase CYP19 isoforms are involved in the sexual differentiation and regulation of the reproductive cycle and male reproductive behavior in diverse teleost species. Alteration of aromatase CYP19 expression and/or activity, be it upregulation or downregulation, may lead to diverse disturbances of the above mentioned processes. Prediction of multiple transcriptional regulatory elements in the promoters of teleost cyp19 genes suggests the possibility for several EDC classes to affect cyp19 expression on the transcriptional level. These sites include cAMP responsive elements, a steroidogenic factor 1/adrenal 4 binding protein site, an estrogen-responsive element (ERE), half-EREs, dioxin-responsive elements, and elements related to diverse other nuclear receptors (peroxisome proliferator activated receptor, retinoid X receptor, retinoic acid receptor). Certain compounds including phytoestrogens, xenoestrogens, fungicides and organotins may modulate aromatase CYP19 activity on the post-transcriptional level. As is shown in this review, diverse EDCs may affect the expression and/or activity of aromatase cyp19 genes through a variety of mechanisms, many of which need further characterization in order to improve the prediction of risks posed by a contaminated environment to teleost fish population.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study is to detail and analyze the distribution, concentration, and loads of 5 organic compounds along Silver Bow Creek in Butte, Montana from the Municipal Wastewater treatment plant to the Warm Springs Ponds. The chemicals analyzed include Carbamazepine (pharmaceutical), Miconazole (fungicide) and three antibiotics – Sulfamethoxazole, Thiabendazole, and Ciprofloxacin. This project begins a 2 year study to analyze 6 additional compounds (11 compounds total), to develop an effective method to detail and analyze OWCs using Mass Spectrometer/Liquid chromatography system, and to aid in assessment of aquatic health and ongoing restoration work. The EPA method 1694 was used for analysis

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Herbivory requires animals to manage intake of toxic phytochemicals. Detoxification and excretion of these chemicals prevents toxicity, but is energetically expensive. I investigated the relationship between investment in detoxification and nutritional condition for moose on Isle Royale National Park (Alces alces) during winter, using urinary indices from urine samples collected in snow. The ratio of urinary urea nitrogen:creatinine is an indicator of nutritional condition, and the ratio of glucuronic acid:creatinine is an indicator of investment in detoxification. Nutritional condition declined with greater investment in detoxification. An alternative means of managing defensive chemical intake is to diversify the diet. Microhistological analysis of fecal pellets determined diet composition. Diet diversity was weakly associated with improved nutritional condition. However, the strongest predictors of nutritional condition were winter severity and proportion of balsam fir in the diet (a dominant food for moose in this ecosystem).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Roads and highways present a unique challenge to wildlife as they exhibit substantial impacts on the surrounding ecosystem through the interruption of a number of ecological processes. With new roads added to the national highway system every year, an understanding of these impacts is required for effective mitigation of potential environmental impacts. A major contributor to these negative effects is the deposition of chemicals used in winter deicing activities to nearby surface waters. These chemicals often vary in composition and may affect freshwater species differently. The negative impacts of widespread deposition of sodium chloride (NaCl) have prompted a search for an `environmentally friendly' alternative. However, little research has investigated the potential environmental effects of widespread use of these alternatives. Herein, I detail the results of laboratory tests and field surveys designed to determine the impacts of road salt (NaCl) and other chemical deicers on amphibian communities in Michigan's Upper Peninsula. Using larval amphibians I demonstrate the lethal impacts of a suite of chemical deicers on this sensitive, freshwater species. Larval wood frogs (Lithobates sylvatica) were tolerant of short-term (96 hours) exposure to urea (CH4N2O), sodium chloride (NaCl), and magnesium chloride (MgCl2). However, these larvae were very sensitive to acetate products (C8H12CaMgO8, CH3COOK) and calcium chloride (CaCl2). These differences in tolerance suggest that certain deicers may be more harmful to amphibians than others. Secondly, I expanded this analysis to include an experiment designed to determine the sublethal effects of chronic exposure to environmentally realistic concentrations of NaCl on two unique amphibian species, L. sylvatica and green frogs (L. clamitans). L. sylvatica tend to breed in small, ephemeral wetlands and metamorphose within a single season. However, L. clamitans breed primarily in more permanent wetlands and often remain as tadpoles for one year or more. These species employ different life history strategies in this region which may influence their response to chronic NaCl exposure. Both species demonstrated potentially harmful effects on individual fitness. L. sylvatica larvae had a high incidence of edema suggesting the NaCl exposure was a significant physiologic stressor to these larvae. L. clamitans larvae reduced tail length during their exposure which may affect adult fitness of these individuals. In order to determine the risk local amphibians face when using these roadside pools, I conducted a survey of the spatial distribution of chloride in the three northernmost counties of Michigan. This area receives a relatively low amount of NaCl which is confined to state and federal highways. The chloride concentrations in this region were much lower than those in urban systems; however, amphibians breeding in the local area may encounter harmful chloride levels arising from temporal variations in hydroperiods. Spatial variation of chloride levels suggests the road-effect zone for amphibians may be as large as 1000 m from a salt-treated highway. Lastly, I performed an analysis of the use of specific conductance to predict chloride concentrations in natural surface water bodies. A number of studies have used this regression to predict chloride concentrations from measurements of specific conductance. This method is often chosen in the place of ion chromatography due to budget and time constraints. However, using a regression method to characterize this relationship does not result in accurate chloride ion concentration estimates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The objective of this dissertation was to design and implement strategies for assessment of exposures to organic chemicals used in the production of a styrene-butadiene polymer at the Texas Plastics Company (TPC). Linear statistical retrospective exposure models, univariate and multivariate, were developed based on the validation of historical industrial hygiene monitoring data collected by industrial hygienists at TPC, and additional current industrial hygiene monitoring data collected for the purposes of this study. The current monitoring data served several purposes. First, it provided information on current exposure data, in the form of unbiased estimates of mean exposure to organic chemicals for each job title included. Second, it provided information on homogeneity of exposure within each job title, through the use of a carefully designed sampling scheme which addressed variability of exposure both between and within job titles. Third, it permitted the investigation of how well current exposure data can serve as an evaluation tool for retrospective exposure estimation. Finally, this dissertation investigated the simultaneous evaluation of exposure to several chemicals, as well as the use of values below detection limits in a multivariate linear statistical model of exposures. ^

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. Acknowledgements: We thank Ms Margaret Fraser, Ms Samantha Flannigan, and Dr Wing Yee Kwong for their expert assistance. The staff at Grampian NHS Pregnancy Counselling Service were essential for collecting fetuses. We thank Professor Geoffrey Hammond and Dr Marc Simard, University of British Colombia for helpful comments on the manuscript. Supported by grants as follows: Scottish Senior Clinical Fellowship (AJD); Chief Scientist Office (Scottish Executive, CZG/1/109 to PAF, & CZG/4/742 (PAF & PJOS); NHS Grampian Endowments 08/02 (PAF, SB & PJOS); the European Community’s Seventh Framework Programme (FP7/2007-2013) under grant agreement no 212885 (PAF & SMR); the Medical Research Council grants MR/L010011/1 (PAF & PJOS) and MR/K018310/1 (AJD). None of the funding bodies played any role in the design, collection, analysis, and interpretation of data, in the writing of the manuscript, nor in the decision to submit the manuscript for publication

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A computational model is presented that can be used as a tool in the design of safer chemicals. This model predicts the rate of hydrogen-atom abstraction by cytochrome P450 enzymes. Excellent correlations between biotransformation rates and the calculated activation energies (delta Hact) of the cytochrome P450-mediated hydrogen-atom abstractions were obtained for the in vitro biotransformation of six halogenated alkanes (1-fluoro-1,1,2,2-tetrachloroethane, 1,1-difluoro-1,2,2-trichloroethane, 1,1,1-trifluro-2,2-dichloroethane, 1,1,1,2-tetrafluoro-2-chloroethane, 1,1,1,2,2,-pentafluoroethane, and 2-bromo-2-chloro-1,1,1-trifluoroethane) with both rat and human enzyme preparations: In(rate, rat liver microsomes) = 44.99 - 1.79(delta Hact), r2 = 0.86; In(rate, human CYP2E1) = 46.99 - 1.77(delta Hact), r2 = 0.97 (rates are in nmol of product per min per nmol of cytochrome P450 and energies are in kcal/mol). Correlations were also obtained for five inhalation anesthetics (enflurane, sevoflurane, desflurane, methoxyflurane, and isoflurane) for both in vivo and in vitro metabolism by humans: In[F(-)]peak plasma = 42.87 - 1.57(delta Hact), r2 = 0.86. To our knowledge, these are the first in vivo human metabolic rates to be quantitatively predicted. Furthermore, this is one of the first examples where computational predictions and in vivo and in vitro data have been shown to agree in any species. The model presented herein provides an archetype for the methodology that may be used in the future design of safer chemicals, particularly hydrochlorofluorocarbons and inhalation anesthetics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The selective production of 2-methyltetrahydrofuran from levulinic acid has been effectively conducted using designed Cu based catalysts and compared with a commercial Pd/C system under microwave irradiation. Optimised conditions for the most active catalysts Cu-MINT (>90% conversion, 75% selectivity to MTHF) and Pd/C (78% conversion, 92% selectivity to MTHF) were further translated into a continuous flow process using the proposed catalysts to find out the deactivation of Cu-MINT under flow conditions (79 vs. 13% conversion with a switch in selectivity to products after 30 min in flow), the high stability of Pd/C (73 vs. 70% conversion at stable selectivity under analogous conditions to those of Cu-MINT) but, most importantly, different relevant pathways to valuable products from levulinic acid depending on the type of catalyst employed.