762 resultados para Degenerating Hyperbolic Manifolds
Resumo:
We study the geometry and the periodic geodesics of a compact Lorentzian manifold that has a Killing vector field which is timelike somewhere. Using a compactness argument for subgroups of the isometry group, we prove the existence of one timelike non self-intersecting periodic geodesic. If the Killing vector field is nowhere vanishing, then there are at least two distinct periodic geodesics; as a special case, compact stationary manifolds have at least two periodic timelike geodesics. We also discuss some properties of the topology of such manifolds. In particular, we show that a compact manifold M admits a Lorentzian metric with a nowhere vanishing Killing vector field which is timelike somewhere if and only if M admits a smooth circle action without fixed points.
Resumo:
In this paper we give a proof of the existence of an orthogonal geodesic chord on a Riemannian manifold homeomorphic to a closed disk and with concave boundary. This kind of study is motivated by the link (proved in Giambo et al. (2005) [8]) of the multiplicity problem with the famous Seifert conjecture (formulated in Seifert (1948) [1]) about multiple brake orbits for a class of Hamiltonian systems at a fixed energy level. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
We generalize the theory of Kobayashi and Oliva (On the Birkhoff Approach to Classical Mechanics. Resenhas do Instituto de Matematica e Estatistica da Universidade de Sao Paulo, 2003) to infinite dimensional Banach manifolds with a view towards applications in partial differential equations.
Resumo:
We describe several families of Lagrangian submanifolds in complex Euclidean space which are H-minimal, i.e. critical points of the volume functional restricted to Hamiltonian variations. We make use of various constructions involving planar, spherical and hyperbolic curves, as well as Legendrian submanifolds of the odd-dimensional unit sphere.
Resumo:
We investigate the isoperimetric problem of finding the regions of prescribed volume with minimal boundary area between two parallel horospheres in hyperbolic 3-space (the part of the boundary contained in the horospheres is not included). We reduce the problem to the study of rotationally invariant regions and obtain the possible isoperimetric solutions by studying the behavior of the profile curves of the rotational surfaces with constant mean curvature in hyperbolic 3-space. We also classify all the connected compact rotational surfaces M of constant mean curvature that are contained in the region between two horospheres, have boundary partial derivative M either empty or lying on the horospheres, and meet the horospheres perpendicularly along their boundary.
Resumo:
We prove the existence of an associated family of G-structure preserving minimal immersions into semi-Riemannian manifolds endowed with a compatible infinitesimally homogeneous G-structure. We will study in more details minimal embeddings into product of space forms.
Resumo:
We study Hardy spaces on the boundary of a smooth open subset or R-n and prove that they can be defined either through the intrinsic maximal function or through Poisson integrals, yielding identical spaces. This extends to any smooth open subset of R-n results already known for the unit ball. As an application, a characterization of the weak boundary values of functions that belong to holomorphic Hardy spaces is given, which implies an F. and M. Riesz type theorem. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
This work deals with the nonlinear piezoelectric coupling in vibration-based energy harvesting, done by A. Triplett and D.D. Quinn in J. of Intelligent Material Syst. and Structures (2009). In that paper the first order nonlinear fundamental equation has a three dimensional state variable. Introducing both observable and control variables in such a way the controlled system became a SISO system, we can obtain as a corollary that for a particular choice of the observable variable it is possible to present an explicit functional relation between this variable one, and the variable representing the charge harvested. After-by observing that the structure in the Input-Output decomposition essentially changes depending on the relative degree changes, presenting bifurcation branches in its zero dynamics-we are able in to identify this type of bifurcation indicating its close relation with the Hartman - Grobman theorem telling about decomposition into stable and the unstable manifolds for hyperbolic points.
Resumo:
The present study describes the morphology and ultrastructure of the salivary glands of semi-engorged females of the southern cattle-tick Rhipicephalus (Boophilus) microplus. The acini that compose these glands, at that specific feeding stage, show cells featuring degenerative process of the salivary glands, such as: vacuolated cytoplasm, condensed chromatin, fragmented nuclei, and presence of apoptotic bodies. In addition, the presence of microorganisms was detected, with morphology typical of protozoa, inside these organs. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A new version of the relaxation algorithm is proposed in order to obtain the stationary ground-state solutions of nonlinear Schrodinger-type equations, including the hyperbolic solutions. In a first example, the method is applied to the three-dimensional Gross-Pitaevskii equation, describing a condensed atomic system with attractive two-body interaction in a non-symmetrical trap, to obtain results for the unstable branch. Next, the approach is also shown to be very reliable and easy to be implemented in a non-symmetrical case that we have bifurcation, with nonlinear cubic and quintic terms. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
A few years ago, Cornish, Spergel and Starkman (CSS) suggested that a multiply connected small universe could allow for classical chaotic mixing as a preinflationary homogenization process. The smaller the volume, the more important the process. Also, a smaller universe has a greater probability of being spontaneously created. Previously DeWitt, Hart and Isham (DHI) calculated the Casimir energy for static multiply connected fat space-times. Because of the interest in small volume hyperbolic universes (e.g., CSS), we generalize the DHI calculation by making a numerical investigation of the Casimir energy for a conformally coupled, massive scalar field in a static universe, whose spatial sections are the Weeks manifold, the smallest universe of negative curvature known. In spite of being a numerical calculation, our result is in fact exact. It is shown that there is spontaneous vacuum excitation of low multipolar components.