962 resultados para Deformation-Mechanism


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Slip-weakening is one of the characteristics of geological materials under certain loadings. Non-uniform rock structure may exist in the vicinity of the slip surface for a rock slope. Some portion of the slip surface may be penetrated but the other not. For the latter case, the crack or the fault surface will undergo shear deformation before it becomes a successive surface under a certain loading. As the slipped portion advances,slip-weakening occurs over a distance behind the crack tip. In the weakening zone, the shear strength will decrease from its peak value to residual friction level. The stress will redistribute along the surface of crack and in the weakening zone. Thus the changed local stress concentration leads the crack to extend and the ratio of penetration of the slip surface to increase. From the view of large-scale for the whole slip surface, the shear strength will decrease due to the damage of interior rock structure, and the faulted rock behaves as a softening material. Such a kind of mechanism performs in a large number of practical landslides in the zones experienced strong earthquakes. It should be noted that the mechanism mentioned above is different from that of the breakage of structural clay,in which the geological material is regarded as a medium containing structural lumps and structural bands. In this paper, the softening behavior of a faulted rock should be regarded as a comprehensive result of the whole complicated process including slip-weakening, redistribution of stress, extension of crack tip, and the penetration of the slip surface. This process is accompanied by progressive failure and abrupt structural damage. The size of slip-weakening zone is related to the undergoing strain. Once the relative slide is initiated (local or integrated), the effect of slip-weakening will behave in a certain length behind the crack tip until the formation of the whole slip surface.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The dynamic micro-deformation of the specimen under laser point source is measured using a laser beam reflex amplifier system and numerically simulated by Msc.Marc software. Compared with experimental result and calculated result, the final deformation direction of the specimen depends on the result of the thermal strain and the phase transformation strain cooperation, away from the laser beam or towards the laser beam, the final deformation angle depends on temperature gradient in the thickness direction and the geometry constraint of the specimen. The conclusion lays the foundation for further research on the mechanism of laser bending. At the same time, it is proposed that the model of calculation based on classical Fourier heat transfer theory cannot be enough to simulate the dynamic micro-deformation of the specimen under laser point source, the model of calculation should be modified in the future.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Defects induced by plastic deformation in electrodeposited, fully dense nanocrystalline (nc) Ni with an average grain size of 25 nm have been characterized by means of high resolution transmission electron microscopy. The nc Ni was deformed under uniaxial tension at liquid-nitrogen temperature. Trapped full dislocations were observed in the grain interior and near the grain boundaries. In particular, these dislocations preferred to exist in the form of dipoles. Deformation twinning was confirmed in nc grains and the most proficient mechanism is the heterogeneous nucleation via emission of partial dislocations from the grain boundaries.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Investigations on the aging hardening behavior of four Al-Li-Zn-Mg-Cu alloys were carried out using differential scanning calorimetry, transmission electron microscopy and hardness measurement. It is shown that the addition of Li inhibits the formation of Zn-rich G.P. zones in Al-Zn-Mg-Cu alloys. The dominant aging hardening precipitates is delta'(Al3Li) phase. Coarse T ((AlZn)(49)Mg-32) phase, instead of MgZn2, precipitates primarily on grain boundaries, and provides little strengthening. The multi-stop aging involving plastic deformation introduces in the matrix a high concentration of structural defects. These defects play different role on the nucleation of Zn-rich G.P. zones in different alloys. For the Li free alloy, structural defects act as vacancy sinks and tend to suppress the homogeneous precipitation of G.P. zones, while for the Li containing alloys, these defects promote the heterogeneous nucleation of G.P. zones and metastable MgZn2. A significant aging hardening effect is attained in deformed Li containing alloys due to the extra precipitation of fine MgZn2 in the matrix combined with deformation hardening.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of surfactant on the breakup of a prestretched bubble in a quiescent viscous surrounding is studied by a combination of direct numerical simulation and the solution of a long-wave asymptotic model. The direct numerical simulations describe the evolution toward breakup of an inviscid bubble, while the effects of small but non-zero interior viscosity are readily included in the long-wave model for a fluid thread in the Stokes flow limit. The direct numerical simulations use a specific but realizable and representative initial bubble shape to compare the evolution toward breakup of a clean or surfactant-free bubble and a bubble that is coated with insoluble surfactant. A distinguishing feature of the evolution in the presence of surfactant is the interruption of bubble breakup by formation of a slender quasi-steady thread of the interior fluid. This forms because the decrease in surface area causes a decrease in the surface tension and capillary pressure, until at a small but non-zero radius, equilibrium occurs between the capillary pressure and interior fluid pressure. The long-wave asymptotic model, for a thread with periodic boundary conditions, explains the principal mechanism of the slender thread's formation and confirms, for example, the relatively minor role played by the Marangoni stress. The large-time evolution of the slender thread and the precise location of its breakup are, however, influenced by effects such as the Marangoni stress and surface diffusion of surfactant. © 2008 Cambridge University Press.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Free surface deformation is one of the most important physical phenomena in fluids with free surface. In the present paper, convection and surface deformation caused by thermocapillary effect in a rectangular cavity were investigated. In ground experiments, the convection was also affected by gravity. The cavity has a horizontal cross section of 52mm×42mm and the thikkness of the liquid layer is 4mm. Temperature difference between two sides of the liquid layer was increased gradually, and the flow in liquid layer will develop from steady to unstable convection. An optical diagnostic system consisting of a revised Michelson interferometer with image processor was developed to study fluid surface deformation in convection, and the displacements of free surface oscillation were determined. PIV technique was adopted to observe the evolution of flow pattern, and the velocity fields were obtained quantitatively. The present experiments demonstrate that surface deformation is quite distinct in buoyant-thermocapillary convection. in order to understand the mechanism of buoyant-thermocapillary convection, not only the hydrothermal wave instability but also the surface wave instability should be discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The frequent drawdown of water level of Yangtze River will greatly influence the stability of the widely existing slopes in the Three Gorges reservoir zone, especially those layered ones. Apart from the fluctuating speed of water level, the different geological materials will also play important roles in the failure of slopes. Thus, it must be first to study the mechanism of such a landslide caused by drawdown of water level.A new experimental setup is designed to study the performance of a layered slope under the drawdown of water level. The pattern of landslide of a layered slope induced by drawdown of water level has been explored by means of simulating experiments. The influence of fluctuating speed of water level on the stability of the layered slope is probed,especially the whole process of deformation and development of landslide of the slope versus time. The experimental results show that the slope is stable during the water level rising, and the sliding body occurs in the upper layer of the slope under a certain drawdown speed of water level. In the process of slope failure, some new small sliding body will develop on the main sliding body, and the result is that they speed up the disassembly of the whole slope.Based on the simulating experiment on landslide of a layered slope induced by drawdown of water level, the stress and displacement field of the slope are calculated.The seepage velocity, the pore water pressure, and the gradient of pore water head are also calculated for the whole process of drawdown of water level. The computing results are in good agreement with the experimental results. Accordingly, the mechanism of deformation and landslide of the layered slope induced by drawdown of water level is analyzed. It may provide basis for treating this kind of layered slopes in practical engineering.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An investigation has been made into the plastic deformation behavior of a Monel alloy deformed at high strain rate of 10(5) s(-1) by split Hopkinson bar. The results reveal that there are some equiaxed grains with an average size of 150 nm in diameter in the center of the shear bands, suggesting that this microstructure characteristics be developed by dynamic recrystallization, arising from the deformation and the rapid temperature rise in the band. Analysis shows that the plastic strain rate and the mobile dislocation density play a key role in the new crystallized grain formation and growth. Based on grain boundary energy change and diffusion mechanism, the grain growth kinetics is developed for plastic deformation at a high strain rate.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Deformation twins have been observed in nanocrystalline (nc) fcc metals with medium-to-high stacking fault energies such as aluminum, copper, and nickel. These metals in their coarse-grained states rarely deform by twining at room temperature and low strain rates. Several twinning mechanisms have been reported that are unique to nc metals. This paper reviews experimental evidences on deformation twinning and partial dislocation. emissions from grain boundaries, twinning mechanisms, and twins with zero-macro-strain. Factors that affect the twinning propensity and recent analytical models on the critical grain sizes for twinning are also discussed. The current issues on deformation twinning in nanocrystalline metals are listed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fe-based bulk metallic glasses (BMGs) normally exhibit super high strength but significant brittleness at ambient temperature. Therefore, it is difficult to investigate the plastic deformation behavior and mechanism in these alloys through conventional tensile and compressive tests due to lack of distinct macroscopic plastic strain. In this work, the deformation behavior of Fe52Cr15Mo9Er3C15B6 BMG was investigated through instrumented nanoindentation and uniaxial compressive tests. The results show that serrated flow, the typical plastic deformation feature of BMGs, could not be found in as-cast and partially crystallized samples during nanoindentation. In addition, the deformation behavior and mechanical properties of the alloy are insensitive to the applied loading rate. The mechanism for the appearance of the peculiar deformation behavior in the Fe-based BMG is discussed in terms of the temporal and spatial characteristics of shear banding during nanoindentation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The deformation behavior and the effect of the loading rate on the plastic deformation features in (numbers indicate at.%) Ce60Al15Cu10Ni15, Ce65Al10Cu10Ni10Nb5, Ce68Al10Cu20Nb2, and Ce70Al10Cu20 bulk metallic glasses (BMGs) were investigated through nanoindentation. The load-displacement (P-h) curves of Ce65Al10Cu10Ni10Nb5, Ce68Al10Cu2, and Ce70Al10Cu20 BMGs exhibited a continuous plastic deformation at all studied loading rate. Whereas, the P-h curves of Ce60Al15Cu10Ni15 BMG showed a quite unique feature, i.e. homogeneous plastic deformation at low loading rates, and a distinct serrated flow at high strain rates. Moreover, a creep deformation during the load holding segment was observed for the four Ce-based BMGs at room temperature. The mechanism for the appearance of the "anomalous" plastic deformation behavior in the Ce-based BMGs was discussed. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The plastic deformation of polycrystalline Cu with ultrathin lamella twins has been studied using molecular dynamics simulations. The results of uniaxial tensile deformation simulation show that the abundance of twin boundaries provides obstacles to dislocation motion, which in consequence leads to a high strain hardening rate in the nanotwinned Cu. We also show that the twin lamellar spacing plays a vital role in controlling the strengthening effects, i.e., the thinner the thickness of the twin lamella, the harder the material. Additionally, twin boundaries can act as dislocation nucleation sites as they gradually lose coherency at large strain. These results indicate that controlled introduction of nanosized twins into metals can be an effective way of improving strength without suppression tensile ductility. (C) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bulk nanostructured metals are often formed via severe plastic deformation (SPD). The dislocations generated during SPD evolve into boundaries to decompose the grains. Vacancies are also produced in large numbers during SPD, but have received much less attention. Using transmission electron microscopy, here we demonstrate a high density of unusually large vacancy Frank loops in SPD-processed Al. They are shown to impede moving dislocations and should be a contributor to strength. (C) 2007 American Institute of Physics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A mathematical model for coupled multiphase fluid flow and sedimentation deformation is developed based on fluid-solid interaction mechanism. A finite difference-finite element numerical approach is presented. The results of an example show that the fluid-solid coupled effect has great influence on multiphase fluid flow and reservoir recovery performances, and the coupled model has practical significance for oilfield development.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The uniqThe unique lamellar chips formed in turning–machining of a Vit 1 bulk metallic glass (BMG) are found to be due to repeated shearband formation in the primary shear zone (PSZ). A coupled thermomechanical orthogonal cutting model, taking into account force, free volume and energy balance in the PSZ, is developed to quantitatively characterize lamellar chip formation. Its onset criterion is revealed through a linear perturbation analysis. Lamellar chip formation is understood as a self-sustained limit-cycle phenomenon: there is autonomous feedback in stress, free volume and temperature in the PSZ. The underlying mechanism is the symmetry breaking of free volume flow and source, rather than thermal instability. These results are fundamentally useful for machining BMGs and even for understanding the physical nature of inhomogeneous flow in BMGs.ue lamellar chips formed in turning–machining of a Vit 1 bulk metallic glass (BMG) are found to be due to repeated shearband.