970 resultados para Deep-sea sounding.
Resumo:
Bathyal and abyssal epibenthic holothurians have a layer of bacteria lying over the tentacular epidermis and below the cuticle. Thus the tentacles of deep-sea holothurians may provide ideal conditions for subcuticular bacteria. These bacteria appear to be regulated by phagocytosis, which, together with pinocytosis would facilitate transfer of bacterial metabolites to the holothurian. Their abundance suggests a previously unknown pathway for energy transformation and assimilation of particular significance in an environment where food is limiting.
Resumo:
Natural deposits of sunken wood provide an important habitat for deep-sea invertebrates. Deep-sea chitons in the primitive order Lepidopleurida are typically collected rarely and as single specimens. However, these animals have been recovered in large densities associated with sunken wood in the tropical West Pacific, in groups of up to 50 individuals. Four deep- sea expeditions in the West Pacific, to the Philippines, Solomon Islands, and Vanuatu, recovered a large number of poly- placophorans. We have examined the morphology as well as the range and distribution of these species, based on the larg- est collection ever examined (more than 1300 individuals). These species show potentially adapted characters associated with exploitation of sunken wood as habitat, such as protruding caps on sensory shell pores (aesthetes) and large interseg- mental bristles with potential sensory function. In this study we investigated the twenty-two species recovered, including seven newly described here (Leptochiton consimilis n. sp., L. angustidens n. sp., L. dykei n. sp., L. samadiae n. sp., L. longisetosus n. sp., L. clarki n. sp., L. schwabei n. sp.), and provide the first identification key to the 34 lepidopleuran chitons known from sunken wood worldwide.
Resumo:
Background: Many deep-sea benthic animals occur in patchy distributions separated by thousands of kilometres, yet because deep-sea habitats are remote, little is known about their larval dispersal. Our novel method simulates dispersal by combining data from the Argo array of autonomous oceanographic probes, deep-sea ecological surveys, and comparative invertebrate physiology. The predicted particle tracks allow quantitative, testable predictions about the dispersal of benthic invertebrate larvae in the south-west Pacific. Principal Findings: In a test case presented here, using non-feeding, non-swimming (lecithotrophic trochophore) larvae of polyplacophoran molluscs (chitons), we show that the likely dispersal pathways in a single generation are significantly shorter than the distances between the three known population centres in our study region. The large-scale density of chiton populations throughout our study region is potentially much greater than present survey data suggest, with intermediate ‘stepping stone’ populations yet to be discovered. Conclusions/Significance: We present a new method that is broadly applicable to studies of the dispersal of deep-sea organisms. This test case demonstrates the power and potential applications of our new method, in generating quantitative, testable hypotheses at multiple levels to solve the mismatch between observed and expected distributions: probabilistic predictions of locations of intermediate populations, potential alternative dispersal mechanisms, and expected population genetic structure. The global Argo data have never previously been used to address benthic biology, and our method can be applied to any non-swimming larvae of the deep-sea, giving information upon dispersal corridors and population densities in habitats that remain intrinsically difficult to assess.
Resumo:
For over 50 years bridge plugs and cement have been used for well abandonment and work over and are still the material of choice. However the failures of cement abandonments using bridge plugs has been reported on many occasions, some of which have resulted in fatal consequences. A new patented product is designed to address the shortcomings associated with using bridge plugs and cement. The new developed tools use an alloy based on bismuth that is melted in situ using Thermite reaction. The tool uses the expansion properties of bismuth to seal the well. Testing the new technology in real field under more than 2 km deep sea water can be expensive. Virtual simulation of the new device under simulated thermal and mechanical environment can be achieved using nonlinear finite element method to validate the product and reduce cost. Experimental testing in the lab is performed to measure heat generated due to thermite reaction. Then, a sequential thermal mechanical explicit/implicit finite element solver is used to simulate the device under both testing lab and deep water conditions.
Resumo:
Within the complex of deep, hypersaline anoxic lakes (DHALs) of the Mediterranean Ridge, we identified a new, unexplored DHAL and named it ‘Lake Kryos’ after a nearby depression. This lake is filled with magnesium chloride (MgCl2)-rich, athalassohaline brine (salinity > 470 practical salinity units), presumably formed by the dissolution of Messinian bischofite. Compared with the DHAL Discovery, it contains elevated concentrations of kosmotropic sodium and sulfate ions, which are capable of reducing the net chaotropicily of MgCl2-rich solutions. The brine of Lake Kryos may therefore be biologically permissive at MgCl2 concentrations previously considered incompatible with life. We characterized the microbiology of the seawater–Kryos brine interface and managed to recover mRNA from the 2.27–3.03 MMgCl2 layer (equivalent to 0.747–0.631 water activity), thereby expanding the established chaotropicity window-for-life. The primary bacterial taxa present there were Kebrit Deep Bacteria 1 candidate division and DHAL-specific group of organisms, distantly related toDesulfohalobium. Two euryarchaeal candidate divisions, Mediterranean Sea Brine Lakes group 1 and halophilic cluster 1, accounted for > 85% of the rRNA-containing archaeal clones derived from the 2.27–3.03 M MgCl2 layer, but were minority community-members in the overlying interface-layers. These findings shed light on the plausibility of life in highly chaotropic environments, geochemical windows for microbial extremophiles, and have implications for habitability elsewhere in the Solar System.
Resumo:
The continuing over-exploitation of traditional coastal stocks has resulted in the shift of commercial fishing towards deep-sea ecosystems in many parts of the world. The effects on target and non-target species have been dramatic; particularly for the deep-sea sharks. With the aim of providing tools that will allow the assessment of population genetic structure of Centroselachus crepidater, novel microsatellite loci have been developed for this deep-sea elasmobranch. Seven of these markers showed between 3 and 7 alleles per locus in two North Atlantic populations, with observed and expected heterozygosities between 0.18-0.95 and 0.25-0.82, respectively. Additionally, ten loci cross-amplify in other Elasmobranch species.
Resumo:
Over-exploitation of traditional coastal stocks and a rising demand for seafood have resulted in the shift of commercial fishing towards less-known, deep-sea species in many parts of the world. Yet, the lack of knowledge of the biology, ecology and life-history of these species represents a serious impediment for establishing sound stock management plans. With the aim of providing tools that will allow assessment of the population genetic structure of Macrourus berglax, we have isolated and characterised a suite of novel microsatellite loci for this deep sea grenadier. Eight of these markers showed between 4 and 11 alleles per locus in two distant North Atlantic populations, with observed and expected heterozygosities between 0.17-0.83 and 0.35-0.87, respectively. Importantly, eight of these loci also cross-amplify in other Macrourid species.
Resumo:
Geological, biological, morphological, and hydrochemical data are presented for the newly discovered Moytirra vent field at 45oN. This is the only high temperature hydrothermal vent known between the Azores and Iceland, in the North Atlantic and is located on a slow to ultraslow-spreading mid-ocean ridge uniquely situated on the 300 m high fault scarp of the eastern axial wall, 3.5 km from the axial volcanic ridge crest. Furthermore, the Moytirra vent field is, unusually for tectonically controlled hydrothermal vents systems, basalt hosted and perched midway up on the median valley wall and presumably heated by an off-axis magma chamber. The Moytirra vent field consists of an alignment of four sites of venting, three actively emitting "black smoke," producing a complex of chimneys and beehive diffusers. The largest chimney is 18 m tall and vigorously venting. The vent fauna described here are the only ones documented for the North Atlantic (Azores to Reykjanes Ridge) and significantly expands our knowledge of North Atlantic biodiversity. The surfaces of the vent chimneys are occupied by aggregations of gastropods (Peltospira sp.) and populations of alvinocaridid shrimp (Mirocaris sp. with Rimicaris sp. also present). Other fauna present include bythograeid crabs (Segonzacia sp.) and zoarcid fish (Pachycara sp.), but bathymodiolin mussels and actinostolid anemones were not observed in the vent field. The discovery of the Moytirra vent field therefore expands the known latitudinal distributions of several vent-endemic genera in the north Atlantic, and reveals faunal affinities with vents south of the Azores rather than north of Iceland. © 2013. American Geophysical Union. All Rights Reserved.
Resumo:
Mining seafloor massive sulfides for metals is an emergent industry faced with environmental management challenges. These revolve largely around limits to our current understanding of biological variability in marine systems, a challenge common to all marine environmental management. VentBase was established as a forum where academic, commercial, governmental, and non-governmental stakeholders can develop a consensus regarding the management of exploitative activities in the deep-sea. Participants advocate a precautionary approach with the incorporation of lessons learned from coastal studies. This workshop report from VentBase encourages the standardization of sampling methodologies for deep-sea environmental impact assessment. VentBase stresses the need for the collation of spatial data and importance of datasets amenable to robust statistical analyses. VentBase supports the identification of set-asides to prevent the local extirpation of vent-endemic communities and for the post-extraction recolonization of mine sites. © 2013.
Resumo:
The interaction between microorganisms and host defense mechanisms is a decisive factor for the survival of marine bivalves. They rely on cell-mediated and humoral reactions to overcome the pathogens that naturally occur in the marine environment. In order to understand host defense reactions in animals inhabiting extreme environments we investigated some of the components from the immune system of the deep sea hydrothermal vent mussel Bathymodiolus azoricus. Cellular constituents in the hemolymph and extrapallial fluid were examined and led to the identification of three types of hemocytes revealing the granulocytes as the most abundant type of cell. To further characterize hemocyte types, the presence of cell surface carbohydrate epitopes was demonstrated with fluorescent WGA lectin, which was mostly ascribed to the granulocytes. Cellular reactions were then investigated by means of phagocytosis and by the activation of putative MAPKs using the microbial compounds zymosan, glucan, peptidoglycan and lipopolysaccharide. Two bacterial agents, Bacillus subtilis and Vibrio parahaemolyticus, were also used to stimulate hemocytes. The results showed that granulocytes were the main phagocytic cells in both hemolymph and extrapallial fluid of B. azoricus. Western blotting analyses using commercially available antibodies against ERK, p38 and JNK, suggested that these putative kinases are involved in signal transduction pathways during experimental stimulation of B. azoricus hemocytes. The fluorescent Ca2+ indicator Fura-2 AM was also insightful in demonstrating hemocyte stimulation in the presence of laminarin or live V. parahaemolyticus. Finally, the expression of the antibacterial gene mytilin was analyzed in gill tissues by means of RT-PCR and whole-mount in situ hybridization. Mytilin transcripts were localized in hemocytes underlying gill epithelium. Moreover, mytilin was induced by exposure of live animals to V. parahaemolyticus. These findings support the premise of a conserved innate immune system in B. azoricus. Such system is comparable to other Bivalves and involves the participation of cellular and humoral components. © 2008 Elsevier Inc. All rights reserved.
Resumo:
Seafloor massive sulfide (SMS) mining will likely occur at hydrothermal systems in the near future. Alongside their mineral wealth, SMS deposits also have considerable biological value. Active SMS deposits host endemic hydrothermal vent communities, whilst inactive deposits support communities of deep water corals and other suspension feeders. Mining activities are expected to remove all large organisms and suitable habitat in the immediate area, making vent endemic organisms particularly at risk from habitat loss and localised extinction. As part of environmental management strategies designed to mitigate the effects of mining, areas of seabed need to be protected to preserve biodiversity that is lost at the mine site and to preserve communities that support connectivity among populations of vent animals in the surrounding region. These "set-aside" areas need to be biologically similar to the mine site and be suitably connected, mostly by transport of larvae, to neighbouring sites to ensure exchange of genetic material among remaining populations. Establishing suitable set-asides can be a formidable task for environmental managers, however the application of genetic approaches can aid set-aside identification, suitability assessment and monitoring. There are many genetic tools available, including analysis of mitochondrial DNA (mtDNA) sequences (e.g. COI or other suitable mtDNA genes) and appropriate nuclear DNA markers (e.g. microsatellites, single nucleotide polymorphisms), environmental DNA (eDNA) techniques and microbial metagenomics. When used in concert with traditional biological survey techniques, these tools can help to identify species, assess the genetic connectivity among populations and assess the diversity of communities. How these techniques can be applied to set-aside decision making is discussed and recommendations are made for the genetic characteristics of set-aside sites. A checklist for environmental regulators forms a guide to aid decision making on the suitability of set-aside design and assessment using genetic tools. This non-technical primer document represents the views of participants in the VentBase 2014 workshop.
Resumo:
Dissertação de Mestrado, Estudos Integrados dos Oceanos, 25 de Julho 2013, Universidade dos Açores.
Resumo:
Tese de Doutoramento em Ciências do Mar, especialidade em Ecologia Marinha.