877 resultados para Deep Belief Network, Deep Learning, Gaze, Head Pose, Surveillance, Unsupervised Learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The efficiency of lecturing or large group teaching has been called into question for many years. An abundance of literature details the components of effective teaching which are not provided in the traditional lecture setting, with many alternative methods of teaching recommended. However, with continued constraints on resources large group teaching is here to stay and student’s expect and are familiar with this method.

Technology Enhanced Learning may be the way forward, to prevent educators from “throwing out the baby with the bath water”. TEL could help Educator’s especially in the area of life sciences which is often taught by lectures to engage and involve students in their learning, provide feedback and incorporate the “quality” of small group teaching, case studies and Enquiry Based Learning into the large group setting thus promoting effective and deep learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Finding rare events in multidimensional data is an important detection problem that has applications in many fields, such as risk estimation in insurance industry, finance, flood prediction, medical diagnosis, quality assurance, security, or safety in transportation. The occurrence of such anomalies is so infrequent that there is usually not enough training data to learn an accurate statistical model of the anomaly class. In some cases, such events may have never been observed, so the only information that is available is a set of normal samples and an assumed pairwise similarity function. Such metric may only be known up to a certain number of unspecified parameters, which would either need to be learned from training data, or fixed by a domain expert. Sometimes, the anomalous condition may be formulated algebraically, such as a measure exceeding a predefined threshold, but nuisance variables may complicate the estimation of such a measure. Change detection methods used in time series analysis are not easily extendable to the multidimensional case, where discontinuities are not localized to a single point. On the other hand, in higher dimensions, data exhibits more complex interdependencies, and there is redundancy that could be exploited to adaptively model the normal data. In the first part of this dissertation, we review the theoretical framework for anomaly detection in images and previous anomaly detection work done in the context of crack detection and detection of anomalous components in railway tracks. In the second part, we propose new anomaly detection algorithms. The fact that curvilinear discontinuities in images are sparse with respect to the frame of shearlets, allows us to pose this anomaly detection problem as basis pursuit optimization. Therefore, we pose the problem of detecting curvilinear anomalies in noisy textured images as a blind source separation problem under sparsity constraints, and propose an iterative shrinkage algorithm to solve it. Taking advantage of the parallel nature of this algorithm, we describe how this method can be accelerated using graphical processing units (GPU). Then, we propose a new method for finding defective components on railway tracks using cameras mounted on a train. We describe how to extract features and use a combination of classifiers to solve this problem. Then, we scale anomaly detection to bigger datasets with complex interdependencies. We show that the anomaly detection problem naturally fits in the multitask learning framework. The first task consists of learning a compact representation of the good samples, while the second task consists of learning the anomaly detector. Using deep convolutional neural networks, we show that it is possible to train a deep model with a limited number of anomalous examples. In sequential detection problems, the presence of time-variant nuisance parameters affect the detection performance. In the last part of this dissertation, we present a method for adaptively estimating the threshold of sequential detectors using Extreme Value Theory on a Bayesian framework. Finally, conclusions on the results obtained are provided, followed by a discussion of possible future work.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To date, adult educational research has had a limited focus on lesbian, gay, bisexual and transgendered (LGBT) adults and the learning processes in which they engage across the life course. Adopting a biographical and life history methodology, this study aimed to critically explore the potentially distinctive nature and impact of how, when and where LGBT adults learn to construct their identities over their lives. In-depth, semi-structured interviews, dialogue and discussion with LGBT individuals and groups provided rich narratives that reflect shifting, diverse and multiple ways of identifying and living as LGBT. Participants engage in learning in unique ways that play a significant role in the construction and expression of such identities, that in turn influence how, when and where learning happens. Framed largely by complex heteronormative forces, learning can have a negative, distortive impact that deeply troubles any balanced, positive sense of being LGBT, leading to self- censoring, alienation and in some cases, hopelessness. However, learning is also more positively experiential, critically reflective, inventive and queer in nature. This can transform how participants understand their sexual identities and the lifewide spaces in which they learn, engendering agency and resilience. Intersectional perspectives reveal learning that participants struggle with, but can reconcile the disjuncture between evolving LGBT and other myriad identities as parents, Christians, teachers, nurses, academics, activists and retirees. The study’s main contributions lie in three areas. A focus on LGBT experience can contribute to the creation of new opportunities to develop intergenerational learning processes. The study also extends the possibilities for greater criticality in older adult education theory, research and practice, based on the continued, rich learning in which participants engage post-work and in later life. Combined with this, there is scope to further explore the nature of ‘life-deep learning’ for other societal groups, brought by combined religious, moral, ideological and social learning that guides action, beliefs, values, and expression of identity. The LGBT adults in this study demonstrate engagement in distinct forms of life-deep learning to navigate social and moral opprobrium. From this they gain hope, self-respect, empathy with others, and deeper self-knowledge.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

(Deep) neural networks are increasingly being used for various computer vision and pattern recognition tasks due to their strong ability to learn highly discriminative features. However, quantitative analysis of their classication ability and design philosophies are still nebulous. In this work, we use information theory to analyze the concatenated restricted Boltzmann machines (RBMs) and propose a mutual information-based RBM neural networks (MI-RBM). We develop a novel pretraining algorithm to maximize the mutual information between RBMs. Extensive experimental results on various classication tasks show the eectiveness of the proposed approach.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The importance of student engagement to higher education quality, making deep learning outcomes possible for students, and achieving student retention, is increasingly being understood. The issue of student engagement in the first year of tertiary study is of particular significance. This paper takes the position that the first year curriculum, and the pedagogical principles that inform its design, are critical influencers of student engagement in the first year learning environment. We use an analysis of case studies prepared for Kift’s ALTC Senior Fellowship to demonstrate ways in which student engagement in the first year of tertiary study can be successfully supported through intentional curriculum design that motivates students to learn, provides a positive learning climate, and encourages students to be active in their learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The following paper explores the use of collaborative pedagogical approaches to advance foundational architectural design education, by linking design process to sustainable technology principles. After a brief discussion on architectural design education, the mentioned collaborative approach is described. This approach facilitates students’ exchange of knowledge between two courses, despite no explicit/assessable requirement to do so. The result for the students is deeper learning and a design process that is enriched through collaboration with sustainable technology. The success of this approach has been measured through questionnaires, evaluation surveys, and a comparative assessment of students common to both courses. The paper focuses on the challenges and innovations in connecting architectural design and technology education, where students are encouraged to implement lessons learnt, thereby closing the gap that these courses have traditionally represented.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter presents a new approach to IT ethics education that may be used by teachers in academic institutions, employees responsible for promoting ethics in organisations and individuals wanting to pursue their own professional development. Experiential ethics education emphasises deep learning that prompts a changed experience of ethics. We first consider how this approach complements other ways of engaging in ethics education. We then explore what it means to strive for experiential change and offer a model which may be useful in pursuing IT professional ethics education in this way.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Much has been said and documented about the key role that reflection can play in the ongoing development of e-portfolios, particularly e-portfolios utilised for teaching and learning. A review of e-portfolio platforms reveals that a designated space for documenting and collating personal reflections is a typical design feature of both open source and commercial off-the-shelf software. Further investigation of tools within e-portfolio systems for facilitating reflection reveals that, apart from enabling personal journalism through blogs or other writing, scaffolding tools that encourage the actual process of reflection are under-developed. Investigation of a number of prominent e-portfolio projects also reveals that reflection, while presented as critically important, is often viewed as an activity that takes place after a learning activity or experience and not intrinsic to it. This paper assumes an alternative, richer conception of reflection: a process integral to a wide range of activities associated with learning, such as inquiry, communication, editing, analysis and evaluation. Such a conception is consistent with the literature associated with ‘communities of practice’, which is replete with insight into ‘learning through doing’, and with a ‘whole minded’ approach to inquiry. Thus, graduates who are ‘reflective practitioners’ who integrate reflection into their learning will have more to offer a prospective employer than graduates who have adopted an episodic approach to reflection. So, what kinds of tools might facilitate integrated reflection? This paper outlines a number of possibilities for consideration and development. Such tools do not have to be embedded within e-portfolio systems, although there are benefits in doing so. In order to inform future design of e-portfolio systems this paper presents a faceted model of knowledge creation that depicts an ‘ecology of knowing’ in which interaction with, and the production of, learning content is deepened through the construction of well-formed questions of that content. In particular, questions that are initiated by ‘why’ are explored because they are distinguished from the other ‘journalist’ questions (who, what, when, where, and where) in that answers to them demand explanative, as opposed to descriptive, content. They require a rationale. Although why questions do not belong to any one genre and are not simple to classify — responses can contain motivational, conditional, causal, and/or existential content — they do make a difference in the acquisition of understanding. The development of scaffolding that builds on why-questioning to enrich learning is the motivation behind the research that has informed this paper.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents some theoretical perspectives that might inform the design and development of information and communications technology (ICT) tools to support integrated (in-session) reflection and deep learning during e-learning. The role of why questioning provides the focus of discussion and is informed by the literature on critical thinking, sense-making, and reflective practice, as well as recent developments in knowledge management, computational linguistics and automated question generation. It is argued that there exists enormous scope for the development of ICT scaffolding targeted at supporting reflective practice during e-learning. The first generations of e-Portfolio tools provide some evidence for the significance of the benefits of integrating reflection into the design of ICT systems; however, following the review of a number of such systems, as well as a range of ICT applications and services designed to support e-learning, it is argued that the scope of implementation is limited.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This chapter discusses a range of issues associated with supporting inquiry and deep reasoning while utilising information and communications technology (ICT). The role of questioning in critical thinking and reflection is considered in the context of scaffolding and new opportunities for ICT-enabled scaffolding identified. In particular, why-questioning provides a key point of focus and is presented as an important consideration in the design of systems that not only require cognitive engagement but aim to nurture it. Advances in automated question generation within intelligent tutoring systems are shown to hold promise for both teaching and learning in a range of other applications. While shortening attention spans appear to be a hazard of engaging with digital media cognitive engagement is presented as something with broader scope than attention span and is best conceived of as a crucible within which a rich mix of cognitive activities take place and from which new knowledge is created.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper is a response to Hoban and Neilsen's (2010) Five Rs model for understanding how learners engage with slowmation. An alternative model (the Learning MMAEPER Model) that builds on the 5Rs model is explained in terms of its use in secondary science preservice teacher education. To probe into the surface and deep learning that can occur during the creation of a slowmation, the learning and relearning model is explored in terms of learning elements. This model can assist teachers to monitor the learning of their students and direct them to a deeper understanding of science concepts.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Facial landmarks play an important role in face recognition. They serve different steps of the recognition such as pose estimation, face alignment, and local feature extraction. Recently, cascaded shape regression has been proposed to accurately locate facial landmarks. A large number of weak regressors are cascaded in a sequence to fit face shapes to the correct landmark locations. In this paper, we propose to improve the method by applying gradual training. With this training, the regressors are not directly aimed to the true locations. The sequence instead is divided into successive parts each of which is aimed to intermediate targets between the initial and the true locations. We also investigate the incorporation of pose information in the cascaded model. The aim is to find out whether the model can be directly used to estimate head pose. Experiments on the Annotated Facial Landmarks in the Wild database have shown that the proposed method is able to improve the localization and give accurate estimates of pose.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lyngbya majuscula is a cyanobacterium (blue-green algae) occurring naturally in tropical and subtropical coastal areas worldwide. Deception Bay, in Northern Moreton Bay, Queensland, has a history of Lyngbya blooms, and forms a case study for this investigation. The South East Queensland (SEQ) Healthy Waterways Partnership, collaboration between government, industry, research and the community, was formed to address issues affecting the health of the river catchments and waterways of South East Queensland. The Partnership coordinated the Lyngbya Research and Management Program (2005-2007) which culminated in a Coastal Algal Blooms (CAB) Action Plan for harmful and nuisance algal blooms, such as Lyngbya majuscula. This first phase of the project was predominantly of a scientific nature and also facilitated the collection of additional data to better understand Lyngbya blooms. The second phase of this project, SEQ Healthy Waterways Strategy 2007-2012, is now underway to implement the CAB Action Plan and as such is more management focussed. As part of the first phase of the project, a Science model for the initiation of a Lyngbya bloom was built using Bayesian Networks (BN). The structure of the Science Bayesian Network was built by the Lyngbya Science Working Group (LSWG) which was drawn from diverse disciplines. The BN was then quantified with annual data and expert knowledge. Scenario testing confirmed the expected temporal nature of bloom initiation and it was recommended that the next version of the BN be extended to take this into account. Elicitation for this BN thus occurred at three levels: design, quantification and verification. The first level involved construction of the conceptual model itself, definition of the nodes within the model and identification of sources of information to quantify the nodes. The second level included elicitation of expert opinion and representation of this information in a form suitable for inclusion in the BN. The third and final level concerned the specification of scenarios used to verify the model. The second phase of the project provides the opportunity to update the network with the newly collected detailed data obtained during the previous phase of the project. Specifically the temporal nature of Lyngbya blooms is of interest. Management efforts need to be directed to the most vulnerable periods to bloom initiation in the Bay. To model the temporal aspects of Lyngbya we are using Object Oriented Bayesian networks (OOBN) to create ‘time slices’ for each of the periods of interest during the summer. OOBNs provide a framework to simplify knowledge representation and facilitate reuse of nodes and network fragments. An OOBN is more hierarchical than a traditional BN with any sub-network able to contain other sub-networks. Connectivity between OOBNs is an important feature and allows information flow between the time slices. This study demonstrates more sophisticated use of expert information within Bayesian networks, which combine expert knowledge with data (categorized using expert-defined thresholds) within an expert-defined model structure. Based on the results from the verification process the experts are able to target areas requiring greater precision and those exhibiting temporal behaviour. The time slices incorporate the data for that time period for each of the temporal nodes (instead of using the annual data from the previous static Science BN) and include lag effects to allow the effect from one time slice to flow to the next time slice. We demonstrate a concurrent steady increase in the probability of initiation of a Lyngbya bloom and conclude that the inclusion of temporal aspects in the BN model is consistent with the perceptions of Lyngbya behaviour held by the stakeholders. This extended model provides a more accurate representation of the increased risk of algal blooms in the summer months and show that the opinions elicited to inform a static BN can be readily extended to a dynamic OOBN, providing more comprehensive information for decision makers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Sensing the mental, physical and emotional demand of a driving task is of primary importance in road safety research and for effectively designing in-vehicle information systems (IVIS). Particularly, the need of cars capable of sensing and reacting to the emotional state of the driver has been repeatedly advocated in the literature. Algorithms and sensors to identify patterns of human behavior, such as gestures, speech, eye gaze and facial expression, are becoming available by using low cost hardware: This paper presents a new system which uses surrogate measures such as facial expression (emotion) and head pose and movements (intention) to infer task difficulty in a driving situation. 11 drivers were recruited and observed in a simulated driving task that involved several pre-programmed events aimed at eliciting emotive reactions, such as being stuck behind slower vehicles, intersections and roundabouts, and potentially dangerous situations. The resulting system, combining face expressions and head pose classification, is capable of recognizing dangerous events (such as crashes and near misses) and stressful situations (e.g. intersections and way giving) that occur during the simulated drive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this book teaching professionalism is characterised by the scholarly underpinning of each contribution; and every contribution provides a rich resource for enhancing teaching practice. The critical concerns for legal education have been identified and discussed: curriculum design that includes graduate attributes; embedding specific attributes across the curriculum; empowering students to learn; academic teamwork to manage large student cohorts; first year and final year transition strategies; tracking students' personal development through the use of ePortfolio; assessment strategies; improving student well-being and promoting resilience; teaching practice to achieve deep learning; flexibility in delivery; the use of Web 2.0 technology; and understanding the 21st century student.