922 resultados para Decision Quality
Resumo:
Decision-making is such an integral aspect in health care routine that the ability to make the right decisions at crucial moments can lead to patient health improvements. Evidence-based practice, the paradigm used to make those informed decisions, relies on the use of current best evidence from systematic research such as randomized controlled trials. Limitations of the outcomes from randomized controlled trials (RCT), such as “quantity” and “quality” of evidence generated, has lowered healthcare professionals’ confidence in using EBP. An alternate paradigm of Practice-Based Evidence has evolved with the key being evidence drawn from practice settings. Through the use of health information technology, electronic health records (EHR) capture relevant clinical practice “evidence”. A data-driven approach is proposed to capitalize on the benefits of EHR. The issues of data privacy, security and integrity are diminished by an information accountability concept. Data warehouse architecture completes the data-driven approach by integrating health data from multi-source systems, unique within the healthcare environment.
Resumo:
Background Over half of the residents in long-term care have a diagnosis of dementia. Maintaining quality of life is important, as there is no cure for dementia. Quality of life may be used as a benchmark for caregiving, and can help to enhance respect for the person with dementia and to improve care provision. The purpose of this study was to describe quality of life as reported by people living with dementia in long-term care in terms of the influencers of, as well as the strategies needed, to improve quality of life. Methods A descriptive exploratory approach. A subsample of twelve residents across two Australian states from a national quantitative study on quality of life was interviewed. Data were analysed thematically from a realist perspective. The approach to the thematic analysis was inductive and data-driven. Results Three themes emerged in relation to influencers and strategies related to quality of life: (a) maintaining independence; (b) having something to do, and; (c) the importance of social interaction. Conclusions The findings highlight the importance of understanding individual resident needs and consideration of the complexity of living in large group living situations, in particular in regard to resident decision-making.
Resumo:
AIMS The aim of this narrative review of the literature was to examine the current state of knowledge regarding the impact of aggressive surgical interventions for severe stroke on patient and caregiver quality of life and caregiver outcomes. BACKGROUND Decompressive hemicraniectomy (DHC) is a surgical therapeutic option for treatment of massive middle cerebral artery infarction (MCA), lobar intracerebral hemorrhage (ICH), and severe aneurysmal subarachnoid hemorrhage (aSAH). Decompressive hemicraniectomy has been shown to be effective in reducing mortality in these three life-threatening conditions. Significant functional impairment is an experience common to many severe stroke survivors worldwide and close relatives experience decision-making difficulty when confronted with making life or death choices related to surgical intervention for severe stroke. DATA SOURCES Academic Search Premier, Cumulative Index to Nursing and Allied Health Literature (CINAHL), Medline, and PsychInfo. REVIEW METHODS A narrative review methodology was utilized in this review of the literature related to long-term outcomes following decompressive hemicraniectomy for stroke. The key words decompressive hemicraniectomy, severe stroke, middle cerebral artery stroke, subarachnoid hemorrhage, lobar ICH, intracerebral hemorrhage, quality of life, and caregivers, literature review were combined to search the databases. RESULTS Good functional outcomes following DHC for life-threatening stroke have been shown to be associated with younger age and few co-morbid conditions. It was also apparent that quality of life was reduced for many stroke survivors, although not assessed routinely in studies. Caregiver burden has not been systematically studied in this population. CONCLUSION Most patients and caregivers in the studies reviewed agreed with the original decision to undergo DHC and would make the same decision again. However, little is known about quality of life for both patients and caregivers and caregiver burden over the long-term post-surgery. Further research is needed to generate information and interventions for the management of ongoing patient and carer recovery following DHC for severe stroke.
Resumo:
Process variability in pollutant build-up and wash-off generates inherent uncertainty that affects the outcomes of stormwater quality models. Poor characterisation of process variability constrains the accurate accounting of the uncertainty associated with pollutant processes. This acts as a significant limitation to effective decision making in relation to stormwater pollution mitigation. The study undertaken developed three theoretical scenarios based on research findings that variations in particle size fractions <150µm and >150µm during pollutant build-up and wash-off primarily determine the variability associated with these processes. These scenarios, which combine pollutant build-up and wash-off processes that takes place on a continuous timeline, are able to explain process variability under different field conditions. Given the variability characteristics of a specific build-up or wash-off event, the theoretical scenarios help to infer the variability characteristics of the associated pollutant process that follows. Mathematical formulation of the theoretical scenarios enables the incorporation of variability characteristics of pollutant build-up and wash-off processes in stormwater quality models. The research study outcomes will contribute to the quantitative assessment of uncertainty as an integral part of the interpretation of stormwater quality modelling outcomes.
Resumo:
Engineers and asset managers must often make decisions on how to best allocate limited resources amongst different interrelated activities, including repair, renewal, inspection, and procurement of new assets. The presence of project interdependencies and the lack of sufficient information on the true value of an activity often produce complex problems and leave the decision maker guessing about the quality and robustness of their decision. In this paper, a decision support framework for uncertain interrelated activities is presented. The framework employs a methodology for multi-criteria ranking in the presence of uncertainty, detailing the effect that uncertain valuations may have on the priority of a particular activity. The framework employs employing semi-quantitative risk measures that can be tailored to an organisation and enable a transparent and simple-to-use uncertainty specification by the decision maker. The framework is then demonstrated on a real world project set from a major Australian utility provider.
Resumo:
The need for better and more accurate assessments of testamentary and decision-making capacity grows as Australian society ages and incidences of mentally disabling conditions increase. Capacity is a legal determination, but one on which medical opinion is increasingly being sought. The difficulties inherent within capacity assessments are exacerbated by the ad hoc approaches adopted by legal and medical professionals based on individual knowledge and skill, as well as the numerous assessment paradigms that exist. This can negatively affect the quality of assessments, and results in confusion as to the best way to assess capacity. This article begins by assessing the nature of capacity. The most common general assessment models used in Australia are then discussed, as are the practical challenges associated with capacity assessment. The article concludes by suggesting a way forward to satisfactorily assess legal capacity given the significant ramifications of getting it wrong.
Resumo:
As of today, user-generated information such as online reviews has become increasingly significant for customers in decision making process. Meanwhile, as the volume of online reviews proliferates, there is an insistent demand to help the users tackle the information overload problem. In order to extract useful information from overwhelming reviews, considerable work has been proposed such as review summarization and review selection. Particularly, to avoid the redundant information, researchers attempt to select a small set of reviews to represent the entire review corpus by preserving its statistical properties (e.g., opinion distribution). However, one significant drawback of the existing works is that they only measure the utility of the extracted reviews as a whole without considering the quality of each individual review. As a result, the set of chosen reviews may consist of low-quality ones even its statistical property is close to that of the original review corpus, which is not preferred by the users. In this paper, we proposed a review selection method which takes review quality into consideration during the selection process. Specifically, we examine the relationships between product features based upon a domain ontology to capture the review characteristics based on which to select reviews that have good quality and preserve the opinion distribution as well. Our experimental results based on real world review datasets demonstrate that our proposed approach is feasible and able to improve the performance of the review selection effectively.
Resumo:
This thesis investigates the use of fusion techniques and mathematical modelling to increase the robustness of iris recognition systems against iris image quality degradation, pupil size changes and partial occlusion. The proposed techniques improve recognition accuracy and enhance security. They can be further developed for better iris recognition in less constrained environments that do not require user cooperation. A framework to analyse the consistency of different regions of the iris is also developed. This can be applied to improve recognition systems using partial iris images, and cancelable biometric signatures or biometric based cryptography for privacy protection.
Resumo:
Background and aim Participation in decision-making, supported by comprehensive and quality information provision, is increasingly emphasised as a priority for women in maternity care. Patient decision aids are tools that can offer women greater access to information and guidance to participate in maternity care decision-making. Relative to their evaluation in controlled settings, the implementation of patient decision aids in routine maternity care has received little attention and our understanding of which approaches may be effective is limited. This paper critically discusses the application of patient decision aids in routine maternity care and explores viable solutions for promoting their successful uptake. Discussion A range of patient decision aids have been developed for use within maternity care, and controlled trials have highlighted their positive impact on the decision-making process for women. Nevertheless, evidence of successful patient decision aid implementation in real world health care settings is lacking due to practical and ideological barriers that exist. Patient-directed social marketing campaigns are a relatively novel approach to patient decision aid delivery that may facilitate their adoption in maternity care, at least in the short-term, by overcoming common implementation barriers. Social marketing may also be particularly well suited to maternity care, given the unique characteristics of this health context. Conclusions The potential of social marketing campaigns to facilitate patient decision aid adoption in maternity care highlights the need for pragmatic trials to evaluate their effectiveness. Identifying which sub-groups of women are more or less likely to respond to these strategies will further direct implementation.
Resumo:
Many statistical forecast systems are available to interested users. In order to be useful for decision-making, these systems must be based on evidence of underlying mechanisms. Once causal connections between the mechanism and their statistical manifestation have been firmly established, the forecasts must also provide some quantitative evidence of `quality’. However, the quality of statistical climate forecast systems (forecast quality) is an ill-defined and frequently misunderstood property. Often, providers and users of such forecast systems are unclear about what ‘quality’ entails and how to measure it, leading to confusion and misinformation. Here we present a generic framework to quantify aspects of forecast quality using an inferential approach to calculate nominal significance levels (p-values) that can be obtained either by directly applying non-parametric statistical tests such as Kruskal-Wallis (KW) or Kolmogorov-Smirnov (KS) or by using Monte-Carlo methods (in the case of forecast skill scores). Once converted to p-values, these forecast quality measures provide a means to objectively evaluate and compare temporal and spatial patterns of forecast quality across datasets and forecast systems. Our analysis demonstrates the importance of providing p-values rather than adopting some arbitrarily chosen significance levels such as p < 0.05 or p < 0.01, which is still common practice. This is illustrated by applying non-parametric tests (such as KW and KS) and skill scoring methods (LEPS and RPSS) to the 5-phase Southern Oscillation Index classification system using historical rainfall data from Australia, The Republic of South Africa and India. The selection of quality measures is solely based on their common use and does not constitute endorsement. We found that non-parametric statistical tests can be adequate proxies for skill measures such as LEPS or RPSS. The framework can be implemented anywhere, regardless of dataset, forecast system or quality measure. Eventually such inferential evidence should be complimented by descriptive statistical methods in order to fully assist in operational risk management.
Resumo:
A decision support system has been developed in Queensland to evaluate how changes in silvicultural regimes affect wood quality, and specifically the graded recovery of structural timber. Models of tree growth, branch architecture and wood properties were developed from data collected in routine Caribbean pine plantations and specific silvicultural experiments. These models were incorporated in software that simulates the conversion of standing trees into logs, and the logs into boards, and generates detailed data on knot location and basic density distribution. The structural grade of each board was determined by simulating the machine stress-grading process, and the predicted graded recovery provided an indicator of wood value. The decision support system improves the basis of decision-making by simulating the performance of elite genetic material under specified silvicultural regimes and by predicting links between wood quality and general stand attributes such as stocking and length of rotation.
Resumo:
Being able to accurately predict the risk of falling is crucial in patients with Parkinson’s dis- ease (PD). This is due to the unfavorable effect of falls, which can lower the quality of life as well as directly impact on survival. Three methods considered for predicting falls are decision trees (DT), Bayesian networks (BN), and support vector machines (SVM). Data on a 1-year prospective study conducted at IHBI, Australia, for 51 people with PD are used. Data processing are conducted using rpart and e1071 packages in R for DT and SVM, con- secutively; and Bayes Server 5.5 for the BN. The results show that BN and SVM produce consistently higher accuracy over the 12 months evaluation time points (average sensitivity and specificity > 92%) than DT (average sensitivity 88%, average specificity 72%). DT is prone to imbalanced data so needs to adjust for the misclassification cost. However, DT provides a straightforward, interpretable result and thus is appealing for helping to identify important items related to falls and to generate fallers’ profiles.
Resumo:
- BACKGROUND Access to information on the features and outcomes associated with the various models of maternity care available in Australia is vital for women's informed decision-making. This study sought to identify women's preferences for information access and decision-making involvement, as well as their priority information needs, for model of care decision-making. - METHODS A convenience sample of adult women of childbearing age in Queensland, Australia were recruited to complete an online survey assessing their model of care decision support needs. Knowledge on models of care and socio-demographic characteristics were also assessed. - RESULTS Altogether, 641 women provided usable survey data. Of these women, 26.7 percent had heard of all available models of care before starting the survey. Most women wanted access to information on models of care (90.4%) and an active role in decision-making (99.0%). Nine priority information needs were identified: cost, access to choice of mode of birth and care provider, after hours provider contact, continuity of carer in labor/birth, mobility during labor, discussion of the pros/cons of medical procedures, rates of skin-to-skin contact after birth, and availability at a preferred birth location. This information encompassed the priority needs of women across age, birth history, and insurance status subgroups. - CONCLUSIONS This study demonstrates Australian women's unmet needs for information that supports them to effectively compare available options for model of maternity care. Findings provide clear direction on what information should be prioritized and ideal channels for information access to support quality decision-making in practice.
Resumo:
The variation in liveweight gain in grazing beef cattle as influenced by pasture type, season and year effects has important economic implications for mixed crop-livestock systems and the ability to better predict such variation would benefit beef producers by providing a guide for decision making. To identify key determinants of liveweight change of Brahman-cross steers grazing subtropical pastures, measurements of pasture quality and quantity, and diet quality in parallel with liveweight were made over two consecutive grazing seasons (48 and 46 weeks, respectively), on mixed Clitoria ternatea/grass, Stylosanthes seabrana/grass and grass swards (grass being a mixture of Bothriochloa insculpta cv. Bisset, Dichanthium sericeum and Panicum maximum var. trichoglume cv. Petrie). Steers grazing the legume-based pastures had the highest growth rate and gained between 64 and 142 kg more than those grazing the grass pastures in under 12 months. Using an exponential model, green leaf mass, green leaf %, adjusted green leaf % (adjusted for inedible woody legume stems), faecal near infrared reflectance spectroscopy predictions of diet crude protein and diet dry matter digestibility, accounted for 77, 74, 80, 63 and 60%, respectively, of the variation in daily weight gain when data were pooled across pasture types and grazing seasons. The standard error of the regressions indicated that 95% prediction intervals were large (+/- 0.42-0.64 kg/head.day) suggesting that derived regression relationships have limited practical application for accurately estimating growth rate. In this study, animal factors, especially compensatory growth effects, appeared to have a major influence on growth rate in relation to pasture and diet attributes. It was concluded that predictions of growth rate based only on pasture or diet attributes are unlikely to be accurate or reliable. Nevertheless, key pasture attributes such as green leaf mass and green leaf% provide a robust indication of what proportion of the potential growth rate of the grazing animals can be achieved.
Resumo:
Insights into the relative importance of various aspects of product quality can be provided through quantitative analysis of consumer preference and choice of fruit. In this study, methods previously used to establish taste preferences for kiwifruit (Harker et al., 2008) and conjoint approaches were used to determine the influence of three key aspects of avocado quality on consumer liking and willingness to purchase fruit: dry matter percentage (DM), level of ripeness (firmness) and internal defects (bruising). One hundred and seven consumers tasted avocados with a range of DM levels from ~20% (minimally mature) to nearly 40% (very mature), and at a range of fruit firmness (ripeness) stages (firm-ripe to soft-ripe). Responses to bruising, a common quality defect in fruit obtained from the retail shelf, were examined using a conjoint approach in which consumers were presented with photographs showing fruit affected by damage of varying severity. In terms of DM, consumers showed a progressive increase in liking and intent to buy avocados as the DM increased. In terms of ripeness, liking and purchase intent was higher in avocados that had softened to a firmness of 6.5 N or below (hand-rating 5). For internal defects, conjoint analysis revealed that price, level of bruising and incidence of bruising all significantly lowered consumers' future purchase decision, but the latter two factors had a greater impact than price. These results indicate the usefulness of the methodology, and also provide realistic targets for Hass avocado quality on the retail shelf.