792 resultados para Decision Process
Resumo:
Aborda a relação entre o Legislativo e o Executivo na produção de políticas. Identifica os elementos do sistema de produção legislativa do Brasil (regras estruturantes, atores, recursos, instâncias de decisão e tipos de políticas produzidas) e propõe um modelo para o caso brasileiro de presidencialismo de coalizão, com base em estudos sobre a relação entre o presidente e o Congresso dos EUA e também na vasta produção existente sobre o contexto nacional. O sistema é estruturado pelo marco normativo de maior hierarquia, a Constituição, determinado historicamente, o qual privilegia a governabilidade com "accountability" e também orienta políticas segundo princípios de equidade, mas com responsabilidade orçamentária. O modelo considera que as agendas estratégicas dos atores são produto de variadas influências, incluindo o ¿status quo¿ (políticas existentes) e as demandas provenientes das conexões normativa e eleitoral. A partir desse modelo, o estudo analisa seus elementos e relações, aplicando-o a um conjunto abrangente de propostas legislativas (cerca de 21 mil proposições sobre todos os temas, apresentadas no Congresso entre 1999 e 2006, nas três vias).
Resumo:
As more people discover coastal and marine protected areas as destinations for leisure-time pursuits, the task of managing coastal resources while providing opportunities for high quality visitor experiences becomes more challenging. Many human impacts occur at these sites; some are caused by recreation and leisure activities on-site, and others by activities such as agriculture, aquaculture, or residential and economic development in surrounding areas. Coastal management professionals are continually looking for effective ways to prevent or mitigate negative impacts of visitor use. (PDF contains 8 pages) Most coastal and marine protected area managers are challenged with balancing two competing goals—protection of natural and cultural resources and provision of opportunities for public use. In most cases, some level of compromise between the goals is necessary, where one goal constrains or “outweighs” the other. Often there is a lack of clear agreement about the priority of these competing goals. Consequently, while natural resource decisions should ultimately be science-based and objective, such decisions are frequently made under uncertainty, relying heavily upon professional judgment. These decisions are subject to a complex array of formal and informal drivers and constraints—data availability, timing, legal mandate, political will, diverse public opinion, and physical, human, and social capital. This paper highlights assessment, monitoring, and planning approaches useful to gauge existing resource and social conditions, determine feasibility of management actions, and record decision process steps to enhance defensibility. Examples are presented from pilot efforts conducted at the Rookery Bay National Estuarine Research Reserve (NERR) and Ten Thousand Islands National Wildlife Refuge (NWR) in South Florida.
Resumo:
[EN]Fundación Zain is developing new built heritage assessment protocols. The goal is to objectivize and standardize the analysis and decision process that leads to determining the degree of protection of built heritage in the Basque Country. The ultimate step in this objectivization and standardization effort will be the development of an information and communication technology (ICT) tool for the assessment of built heritage. This paper presents the ground work carried out to make this tool possible: the automatic, image-based delineation of stone masonry. This is a necessary first step in the development of the tool, as the built heritage that will be assessed consists of stone masonry construction, and many of the features analyzed can be characterized according to the geometry and arrangement of the stones. Much of the assessment is carried out through visual inspection. Thus, this process will be automated by applying image processing on digital images of the elements under inspection. The principal contribution of this paper is the automatic delineation the framework proposed. The other contribution is the performance evaluation of this delineation as the input to a classifier for a geometrically characterized feature of a built heritage object. The element chosen to perform this evaluation is the stone arrangement of masonry walls. The validity of the proposed framework is assessed on real images of masonry walls.
Resumo:
A general framework for multi-criteria optimal design is presented which is well-suited for automated design of structural systems. A systematic computer-aided optimal design decision process is developed which allows the designer to rapidly evaluate and improve a proposed design by taking into account the major factors of interest related to different aspects such as design, construction, and operation.
The proposed optimal design process requires the selection of the most promising choice of design parameters taken from a large design space, based on an evaluation using specified criteria. The design parameters specify a particular design, and so they relate to member sizes, structural configuration, etc. The evaluation of the design uses performance parameters which may include structural response parameters, risks due to uncertain loads and modeling errors, construction and operating costs, etc. Preference functions are used to implement the design criteria in a "soft" form. These preference functions give a measure of the degree of satisfaction of each design criterion. The overall evaluation measure for a design is built up from the individual measures for each criterion through a preference combination rule. The goal of the optimal design process is to obtain a design that has the highest overall evaluation measure - an optimization problem.
Genetic algorithms are stochastic optimization methods that are based on evolutionary theory. They provide the exploration power necessary to explore high-dimensional search spaces to seek these optimal solutions. Two special genetic algorithms, hGA and vGA, are presented here for continuous and discrete optimization problems, respectively.
The methodology is demonstrated with several examples involving the design of truss and frame systems. These examples are solved by using the proposed hGA and vGA.
Resumo:
Earthquake early warning (EEW) systems have been rapidly developing over the past decade. Japan Meteorological Agency (JMA) has an EEW system that was operating during the 2011 M9 Tohoku earthquake in Japan, and this increased the awareness of EEW systems around the world. While longer-time earthquake prediction still faces many challenges to be practical, the availability of shorter-time EEW opens up a new door for earthquake loss mitigation. After an earthquake fault begins rupturing, an EEW system utilizes the first few seconds of recorded seismic waveform data to quickly predict the hypocenter location, magnitude, origin time and the expected shaking intensity level around the region. This early warning information is broadcast to different sites before the strong shaking arrives. The warning lead time of such a system is short, typically a few seconds to a minute or so, and the information is uncertain. These factors limit human intervention to activate mitigation actions and this must be addressed for engineering applications of EEW. This study applies a Bayesian probabilistic approach along with machine learning techniques and decision theories from economics to improve different aspects of EEW operation, including extending it to engineering applications.
Existing EEW systems are often based on a deterministic approach. Often, they assume that only a single event occurs within a short period of time, which led to many false alarms after the Tohoku earthquake in Japan. This study develops a probability-based EEW algorithm based on an existing deterministic model to extend the EEW system to the case of concurrent events, which are often observed during the aftershock sequence after a large earthquake.
To overcome the challenge of uncertain information and short lead time of EEW, this study also develops an earthquake probability-based automated decision-making (ePAD) framework to make robust decision for EEW mitigation applications. A cost-benefit model that can capture the uncertainties in EEW information and the decision process is used. This approach is called the Performance-Based Earthquake Early Warning, which is based on the PEER Performance-Based Earthquake Engineering method. Use of surrogate models is suggested to improve computational efficiency. Also, new models are proposed to add the influence of lead time into the cost-benefit analysis. For example, a value of information model is used to quantify the potential value of delaying the activation of a mitigation action for a possible reduction of the uncertainty of EEW information in the next update. Two practical examples, evacuation alert and elevator control, are studied to illustrate the ePAD framework. Potential advanced EEW applications, such as the case of multiple-action decisions and the synergy of EEW and structural health monitoring systems, are also discussed.
Resumo:
Modern robots are increasingly expected to function in uncertain and dynamically challenging environments, often in proximity with humans. In addition, wide scale adoption of robots requires on-the-fly adaptability of software for diverse application. These requirements strongly suggest the need to adopt formal representations of high level goals and safety specifications, especially as temporal logic formulas. This approach allows for the use of formal verification techniques for controller synthesis that can give guarantees for safety and performance. Robots operating in unstructured environments also face limited sensing capability. Correctly inferring a robot's progress toward high level goal can be challenging.
This thesis develops new algorithms for synthesizing discrete controllers in partially known environments under specifications represented as linear temporal logic (LTL) formulas. It is inspired by recent developments in finite abstraction techniques for hybrid systems and motion planning problems. The robot and its environment is assumed to have a finite abstraction as a Partially Observable Markov Decision Process (POMDP), which is a powerful model class capable of representing a wide variety of problems. However, synthesizing controllers that satisfy LTL goals over POMDPs is a challenging problem which has received only limited attention.
This thesis proposes tractable, approximate algorithms for the control synthesis problem using Finite State Controllers (FSCs). The use of FSCs to control finite POMDPs allows for the closed system to be analyzed as finite global Markov chain. The thesis explicitly shows how transient and steady state behavior of the global Markov chains can be related to two different criteria with respect to satisfaction of LTL formulas. First, the maximization of the probability of LTL satisfaction is related to an optimization problem over a parametrization of the FSC. Analytic computation of gradients are derived which allows the use of first order optimization techniques.
The second criterion encourages rapid and frequent visits to a restricted set of states over infinite executions. It is formulated as a constrained optimization problem with a discounted long term reward objective by the novel utilization of a fundamental equation for Markov chains - the Poisson equation. A new constrained policy iteration technique is proposed to solve the resulting dynamic program, which also provides a way to escape local maxima.
The algorithms proposed in the thesis are applied to the task planning and execution challenges faced during the DARPA Autonomous Robotic Manipulation - Software challenge.
Resumo:
Esse estudo aborda a relação entre o Legislativo e o Executivo na produção de políticas. Identifica os elementos do sistema de produção legislativa do Brasil (regras estruturantes, atores, recursos, instâncias de decisão e tipos de políticas produzidas) e propõe um modelo para o caso brasileiro de presidencialismo de coalizão, com base em estudos sobre a relação entre o presidente e o Congresso dos EUA e também na vasta produção existente sobre o contexto nacional. O sistema é estruturado pelo marco normativo de maior hierarquia, a Constituição, determinado historicamente, o qual privilegia a governabilidade com accountability e também orienta políticas segundo princípios de equidade, mas com responsabilidade orçamentária. O modelo considera que as agendas estratégicas dos atores são produto de variadas influências, incluindo o status quo (políticas existentes) e as demandas provenientes das conexões normativa e eleitoral. A primeira cria path dependencies e limita opções de política, realçando questões de capacidade de governar. A segunda agrega preferências em torno do pertencimento à coalizão de governo ou à oposição. As proposições legislativas decorrentes das agendas dos atores são processadas em instâncias de decisão pré-determinadas do Congresso Nacional, segundo conteúdo e relevância das matérias, onde os atores interagem por meio da seleção de vias legislativas e de outros recursos estratégicos. O arcabouço sistêmico é integrado às interações estratégicas que ocorrem nas fases de iniciação, apreciação e conclusão da tramitação de proposições legislativas (em três vias distintas: a constitucional, a complementar e a ordinária). Essa estrutura é reforçada por regras que centralizam o processo decisório durante a tramitação no Congresso. Os produtos do sistema são as leis com impacto em políticas públicas. A partir desse modelo, o estudo analisa seus elementos e relações, aplicando-o a um conjunto abrangente de propostas egislativas (cerca de 21 mil proposições sobre todos os temas, apresentadas no Congresso entre 1999 e 2006, nas três vias). São observados indícios de quatro tipos de interação, segundo padrões de conflito e liderança dos atores: liderança da coalizão, liderança do Legislativo, cooperação e impasse. Os dados opõem-se à demarcação da agenda entre os Poderes e indicam que o êxito do Executivo variou inversamente com a hierarquia da via e que o desempenho do Legislativo superou o do Executivo na via constitucional, com destaque para a atividade do Senado, e na via ordinária (apenas no caso dos projetos de lei ordinária, pois os privilégios de iniciativa exclusiva do Executivo para leis orçamentárias e de edição de medidas provisórias, com força imediata de lei, garantem maior desempenho quantitativo a esse Poder nessa via). Contudo, a coalizão predominou amplamente em todas as vias. Análises qualitativas com foco na política de saúde e seu financiamento reforçam esses achados e sugerem que, apesar das muitas regularidades identificadas no sistema (rejeitando teses como a paralisia decisória ou a completa predominância do Executivo), fragmentações na sociedade e no Estado, persistem como fatores que limitam a produção de políticas mais equitativas
Resumo:
This work is aimed at optimizing the wind turbine rotor speed setpoint algorithm. Several intelligent adjustment strategies have been investigated in order to improve a reward function that takes into account the power captured from the wind and the turbine speed error. After different approaches including Reinforcement Learning, the best results were obtained using a Particle Swarm Optimization (PSO)-based wind turbine speed setpoint algorithm. A reward improvement of up to 10.67% has been achieved using PSO compared to a constant approach and 0.48% compared to a conventional approach. We conclude that the pitch angle is the most adequate input variable for the turbine speed setpoint algorithm compared to others such as rotor speed, or rotor angular acceleration.
Resumo:
O cuidado no fim de vida em neonatologia é um assunto que desperta diversos conflitos éticos entre os profissionais, principalmente pela possibilidade de adiamento da morte devido aos novos aparatos vindos do desenvolvimento da ciência, mesmo quando a cura não é mais possível. Este estudo analisou de maneira qualitativa a percepção dos profissionais de saúde de uma unidade de terapia intensiva neonatal da rede federal do Rio de Janeiro. Nesta pesquisa foram realizadas vinte entrevistas com fisioterapeutas, médicos, enfermeiros, técnicos de enfermagem, psicólogo e nutricionistas, todas do sexo feminino. Elementos como a percepção em relação a: qual conduta é realizada em pacientes em fim de vida, quais elas acreditam serem as mais adequadas, quais os sentimentos frente a um recémnascido terminal, quem elas percebem que decide nessas situações e quem elas creem que deveria participar do processo de decisão, assim como se elas gostariam de participar caso fossem mães de um bebê terminal, foram colhidos e divididos em categorias para serem discutidos. Como conclusão, nota-se que as profissionais relataram que condutas que levam a distanásia são frequentes no setor, apesar de muitas acreditarem que a melhor terapia seja a de cuidados paliativos. Sentimentos de tristeza, impotência e angústia são comuns entre elas ao lidar com a terminalidade e obstinação terapêutica. A falta de comunicação destaca-se como fator importante na visão das entrevistadas para a pequena contribuição de toda a equipe multidisciplinar e dos pais no processo decisório em situações de fim de vida.
Resumo:
Fundacion Zain is developing new built heritage assessment protocols. The goal is to objectivize and standardize the analysis and decision process that leads to determining the degree of protection of built heritage in the Basque Country. The ultimate step in this objectivization and standardization effort will be the development of an information and communication technology (ICT) tool for the assessment of built heritage. This paper presents the ground work carried out to make this tool possible: the automatic, image-based delineation of stone masonry. This is a necessary first step in the development of the tool, as the built heritage that will be assessed consists of stone masonry construction, and many of the features analyzed can be characterized according to the geometry and arrangement of the stones. Much of the assessment is carried out through visual inspection. Thus, this process will be automated by applying image processing on digital images of the elements under inspection. The principal contribution of this paper is the automatic delineation the framework proposed. The other contribution is the performance evaluation of this delineation as the input to a classifier for a geometrically characterized feature of a built heritage object. The element chosen to perform this evaluation is the stone arrangement of masonry walls. The validity of the proposed framework is assessed on real images of masonry walls.
Resumo:
O entendimento das necessidades dos clientes tornou-se mandatório para sobreviver em um mercado globalizado e altamente competitivo. Por isso, o conceito de gestão de relacionamento com os clientes é fundamental para as empresas. Atualmente, as organizações buscam recursos para atrair, reter e cultivar os clientes. Neste sentido, os escritórios de contabilidade estão investindo no aperfeiçoamento dos métodos de interação com os clientes. Uma maneira diferenciada é a utilização de soluções tecnológicas. Assim, o presente estudo teve por objetivo analisar as estratégias utilizadas por um escritório de contabilidade automatizado para gerir o relacionamento com os seus clientes. Além disso, o objetivo específico foi sugerir estratégias que possam ser aplicadas em escritórios de contabilidade. O estudo foi classificado como uma pesquisa aplicada e exploratória. Para a coleta de dados foi realizado um estudo de caso por meio de uma entrevista semi-estruturada com um empresário de um escritório contábil. A pesquisa constatou que o uso de ferramentas tecnológicas proporciona facilidade de acesso ao escritório, rapidez no negócio e no processo decisório dos clientes. As sugestões de estratégias elencadas no estudo permitem aprimorar os canais de interação dos escritórios de contabilidade, incentivar o uso das soluções tecnológicas e facilitar as tomadas de decisões empresarias por meio das demonstrações financeiras geradas.
Resumo:
Situado no contexto da qualidade em saúde, este estudo versa sobre a decisão clínica e autonomia do paciente. Parte-se da premissa que, demais da competência técnica profissional e utilização de tecnologia adequada, o respeito aos direitos dos pacientes é atributo essencial à boa qualidade do atendimento médico. Tomando como exemplo a abordagem terapêutica do climatério, foi feita análise qualitativa do processo de decisão clínica, com base nas informações obtidas através de entrevistas semi-estruturadas com médico ginecologistas e com pacientes em fase de climatério. O propósito foi buscar apreender os valores dos médicos e dos pacientes e tentar compreender a lógica de seus comportamentos e atitudes, no que se refere especificamente aos papéis desempenhados por eles nesse processo. Com base nos resultados da análise, discute-se a complexidade da aplicação do princípio da autonomia na prática clínica e apresenta-se uma reflexão sobre a acreditação, como estratégia possível de contribuição a esse processo e à melhoria da qualidade do atendimento médico, por sua grande identificação como os aspectos relativos aos direitos dos pacientes, aos processos de educação permanente e à melhoria contínua da qualidade.
Resumo:
The partially observable Markov decision process (POMDP) provides a popular framework for modelling spoken dialogue. This paper describes how the expectation propagation algorithm (EP) can be used to learn the parameters of the POMDP user model. Various special probability factors applicable to this task are presented, which allow the parameters be to learned when the structure of the dialogue is complex. No annotations, neither the true dialogue state nor the true semantics of user utterances, are required. Parameters optimised using the proposed techniques are shown to improve the performance of both offline transcription experiments as well as simulated dialogue management performance. ©2010 IEEE.
Resumo:
Effective dialogue management is critically dependent on the information that is encoded in the dialogue state. In order to deploy reinforcement learning for policy optimization, dialogue must be modeled as a Markov Decision Process. This requires that the dialogue statemust encode all relevent information obtained during the dialogue prior to that state. This can be achieved by combining the user goal, the dialogue history, and the last user action to form the dialogue state. In addition, to gain robustness to input errors, dialogue must be modeled as a Partially Observable Markov Decision Process (POMDP) and hence, a distribution over all possible states must be maintained at every dialogue turn. This poses a potential computational limitation since there can be a very large number of dialogue states. The Hidden Information State model provides a principled way of ensuring tractability in a POMDP-based dialogue model. The key feature of this model is the grouping of user goals into partitions that are dynamically built during the dialogue. In this article, we extend this model further to incorporate the notion of complements. This allows for a more complex user goal to be represented, and it enables an effective pruning technique to be implemented that preserves the overall system performance within a limited computational resource more effectively than existing approaches. © 2011 ACM.
Resumo:
Reinforcement techniques have been successfully used to maximise the expected cumulative reward of statistical dialogue systems. Typically, reinforcement learning is used to estimate the parameters of a dialogue policy which selects the system's responses based on the inferred dialogue state. However, the inference of the dialogue state itself depends on a dialogue model which describes the expected behaviour of a user when interacting with the system. Ideally the parameters of this dialogue model should be also optimised to maximise the expected cumulative reward. This article presents two novel reinforcement algorithms for learning the parameters of a dialogue model. First, the Natural Belief Critic algorithm is designed to optimise the model parameters while the policy is kept fixed. This algorithm is suitable, for example, in systems using a handcrafted policy, perhaps prescribed by other design considerations. Second, the Natural Actor and Belief Critic algorithm jointly optimises both the model and the policy parameters. The algorithms are evaluated on a statistical dialogue system modelled as a Partially Observable Markov Decision Process in a tourist information domain. The evaluation is performed with a user simulator and with real users. The experiments indicate that model parameters estimated to maximise the expected reward function provide improved performance compared to the baseline handcrafted parameters. © 2011 Elsevier Ltd. All rights reserved.