863 resultados para Data sources detection


Relevância:

90.00% 90.00%

Publicador:

Resumo:

CONTEXT Subclinical hypothyroidism has been associated with increased risk of coronary heart disease (CHD), particularly with thyrotropin levels of 10.0 mIU/L or greater. The measurement of thyroid antibodies helps predict the progression to overt hypothyroidism, but it is unclear whether thyroid autoimmunity independently affects CHD risk. OBJECTIVE The objective of the study was to compare the CHD risk of subclinical hypothyroidism with and without thyroid peroxidase antibodies (TPOAbs). DATA SOURCES AND STUDY SELECTION A MEDLINE and EMBASE search from 1950 to 2011 was conducted for prospective cohorts, reporting baseline thyroid function, antibodies, and CHD outcomes. DATA EXTRACTION Individual data of 38 274 participants from six cohorts for CHD mortality followed up for 460 333 person-years and 33 394 participants from four cohorts for CHD events. DATA SYNTHESIS Among 38 274 adults (median age 55 y, 63% women), 1691 (4.4%) had subclinical hypothyroidism, of whom 775 (45.8%) had positive TPOAbs. During follow-up, 1436 participants died of CHD and 3285 had CHD events. Compared with euthyroid individuals, age- and gender-adjusted risks of CHD mortality in subclinical hypothyroidism were similar among individuals with and without TPOAbs [hazard ratio (HR) 1.15, 95% confidence interval (CI) 0.87-1.53 vs HR 1.26, CI 1.01-1.58, P for interaction = .62], as were risks of CHD events (HR 1.16, CI 0.87-1.56 vs HR 1.26, CI 1.02-1.56, P for interaction = .65). Risks of CHD mortality and events increased with higher thyrotropin, but within each stratum, risks did not differ by TPOAb status. CONCLUSIONS CHD risk associated with subclinical hypothyroidism did not differ by TPOAb status, suggesting that biomarkers of thyroid autoimmunity do not add independent prognostic information for CHD outcomes.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The field of animal syndromic surveillance (SyS) is growing, with many systems being developed worldwide. Now is an appropriate time to share ideas and lessons learned from early SyS design and implementation. Based on our practical experience in animal health SyS, with additions from the public health and animal health SyS literature, we put forward for discussion a 6-step approach to designing SyS systems for livestock and poultry. The first step is to formalise policy and surveillance goals which are considerate of stakeholder expectations and reflect priority issues (1). Next, it is important to find consensus on national priority diseases and identify current surveillance gaps. The geographic, demographic, and temporal coverage of the system must be carefully assessed (2). A minimum dataset for SyS that includes the essential data to achieve all surveillance objectives while minimizing the amount of data collected should be defined. One can then compile an inventory of the data sources available and evaluate each using the criteria developed (3). A list of syndromes should then be produced for all data sources. Cases can be classified into syndrome classes and the data can be converted into time series (4). Based on the characteristics of the syndrome-time series, the length of historic data available and the type of outbreaks the system must detect, different aberration detection algorithms can be tested (5). Finally, it is essential to develop a minimally acceptable response protocol for each statistical signal produced (6). Important outcomes of this pre-operational phase should be building of a national network of experts and collective action and evaluation plans. While some of the more applied steps (4 and 5) are currently receiving consideration, more emphasis should be put on earlier conceptual steps by decision makers and surveillance developers (1-3).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Conservation and monitoring of forest biodiversity requires reliable information about forest structure and composition at multiple spatial scales. However, detailed data about forest habitat characteristics across large areas are often incomplete due to difficulties associated with field sampling methods. To overcome this limitation we employed a nationally available light detection and ranging (LiDAR) remote sensing dataset to develop variables describing forest landscape structure across a large environmental gradient in Switzerland. Using a model species indicative of structurally rich mountain forests (hazel grouse Bonasa bonasia), we tested the potential of such variables to predict species occurrence and evaluated the additional benefit of LiDAR data when used in combination with traditional, sample plot-based field variables. We calibrated boosted regression trees (BRT) models for both variable sets separately and in combination, and compared the models’ accuracies. While both field-based and LiDAR models performed well, combining the two data sources improved the accuracy of the species’ habitat model. The variables retained from the two datasets held different types of information: field variables mostly quantified food resources and cover in the field and shrub layer, LiDAR variables characterized heterogeneity of vegetation structure which correlated with field variables describing the understory and ground vegetation. When combined with data on forest vegetation composition from field surveys, LiDAR provides valuable complementary information for encompassing species niches more comprehensively. Thus, LiDAR bridges the gap between precise, locally restricted field-data and coarse digital land cover information by reliably identifying habitat structure and quality across large areas.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

OBJECTIVE The objective was to determine the risk of stroke associated with subclinical hypothyroidism. DATA SOURCES AND STUDY SELECTION Published prospective cohort studies were identified through a systematic search through November 2013 without restrictions in several databases. Unpublished studies were identified through the Thyroid Studies Collaboration. We collected individual participant data on thyroid function and stroke outcome. Euthyroidism was defined as TSH levels of 0.45-4.49 mIU/L, and subclinical hypothyroidism was defined as TSH levels of 4.5-19.9 mIU/L with normal T4 levels. DATA EXTRACTION AND SYNTHESIS We collected individual participant data on 47 573 adults (3451 subclinical hypothyroidism) from 17 cohorts and followed up from 1972-2014 (489 192 person-years). Age- and sex-adjusted pooled hazard ratios (HRs) for participants with subclinical hypothyroidism compared to euthyroidism were 1.05 (95% confidence interval [CI], 0.91-1.21) for stroke events (combined fatal and nonfatal stroke) and 1.07 (95% CI, 0.80-1.42) for fatal stroke. Stratified by age, the HR for stroke events was 3.32 (95% CI, 1.25-8.80) for individuals aged 18-49 years. There was an increased risk of fatal stroke in the age groups 18-49 and 50-64 years, with a HR of 4.22 (95% CI, 1.08-16.55) and 2.86 (95% CI, 1.31-6.26), respectively (p trend 0.04). We found no increased risk for those 65-79 years old (HR, 1.00; 95% CI, 0.86-1.18) or ≥ 80 years old (HR, 1.31; 95% CI, 0.79-2.18). There was a pattern of increased risk of fatal stroke with higher TSH concentrations. CONCLUSIONS Although no overall effect of subclinical hypothyroidism on stroke could be demonstrated, an increased risk in subjects younger than 65 years and those with higher TSH concentrations was observed.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Publishing Linked Data is a process that involves several design decisions and technologies. Although some initial guidelines have been already provided by Linked Data publishers, these are still far from covering all the steps that are necessary (from data source selection to publication) or giving enough details about all these steps, technologies, intermediate products, etc. Furthermore, given the variety of data sources from which Linked Data can be generated, we believe that it is possible to have a single and uni�ed method for publishing Linked Data, but we should rely on di�erent techniques, technologies and tools for particular datasets of a given domain. In this paper we present a general method for publishing Linked Data and the application of the method to cover di�erent sources from di�erent domains.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

As the number of data sources publishing their data on the Web of Data is growing, we are experiencing an immense growth of the Linked Open Data cloud. The lack of control on the published sources, which could be untrustworthy or unreliable, along with their dynamic nature that often invalidates links and causes conflicts or other discrepancies, could lead to poor quality data. In order to judge data quality, a number of quality indicators have been proposed, coupled with quality metrics that quantify the “quality level” of a dataset. In addition to the above, some approaches address how to improve the quality of the datasets through a repair process that focuses on how to correct invalidities caused by constraint violations by either removing or adding triples. In this paper we argue that provenance is a critical factor that should be taken into account during repairs to ensure that the most reliable data is kept. Based on this idea, we propose quality metrics that take into account provenance and evaluate their applicability as repair guidelines in a particular data fusion setting.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Sensor networks are increasingly becoming one of the main sources of Big Data on the Web. However, the observations that they produce are made available with heterogeneous schemas, vocabularies and data formats, making it difficult to share and reuse these data for other purposes than those for which they were originally set up. In this thesis we address these challenges, considering how we can transform streaming raw data to rich ontology-based information that is accessible through continuous queries for streaming data. Our main contribution is an ontology-based approach for providing data access and query capabilities to streaming data sources, allowing users to express their needs at a conceptual level, independent of implementation and language-specific details. We introduce novel query rewriting and data translation techniques that rely on mapping definitions relating streaming data models to ontological concepts. Specific contributions include: • The syntax and semantics of the SPARQLStream query language for ontologybased data access, and a query rewriting approach for transforming SPARQLStream queries into streaming algebra expressions. • The design of an ontology-based streaming data access engine that can internally reuse an existing data stream engine, complex event processor or sensor middleware, using R2RML mappings for defining relationships between streaming data models and ontology concepts. Concerning the sensor metadata of such streaming data sources, we have investigated how we can use raw measurements to characterize streaming data, producing enriched data descriptions in terms of ontological models. Our specific contributions are: • A representation of sensor data time series that captures gradient information that is useful to characterize types of sensor data. • A method for classifying sensor data time series and determining the type of data, using data mining techniques, and a method for extracting semantic sensor metadata features from the time series.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In this position paper, we claim that the need for time consuming data preparation and result interpretation tasks in knowledge discovery, as well as for costly expert consultation and consensus building activities required for ontology building can be reduced through exploiting the interplay of data mining and ontology engineering. The aim is to obtain in a semi-automatic way new knowledge from distributed data sources that can be used for inference and reasoning, as well as to guide the extraction of further knowledge from these data sources. The proposed approach is based on the creation of a novel knowledge discovery method relying on the combination, through an iterative ?feedbackloop?, of (a) data mining techniques to make emerge implicit models from data and (b) pattern-based ontology engineering to capture these models in reusable, conceptual and inferable artefacts.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Despite that Critical Infrastructures (CIs) security and surveillance are a growing concern for many countries and companies, Multi Robot Systems (MRSs) have not been yet broadly used in this type of facilities. This dissertation presents a novel study of the challenges arisen by the implementation of this type of systems and proposes solutions to specific problems. First, a comprehensive analysis of different types of CIs has been carried out, emphasizing the influence of the different characteristics of the facilities in the design of a security and surveillance MRS. One of the most important needs for the surveillance of a CI is the detection of intruders. From a technical point of view this problem can be abstracted as equivalent to the Detection and Tracking of Mobile Objects (DATMO). This dissertation proposes algorithms to solve this specific problem in a CI environment. Using 3D range images of the environment as input data, two detection algorithms for ground robots have been developed. These detection algorithms provide a list of moving objects in the robot detection area. Direct image differentiation and computer vision techniques are used when the robot is static. Alternatively, multi-layer ground reconstructions are compared to detect the dynamic objects when the robot is moving. Since CIs usually spread over large areas, it is very useful to incorporate aerial vehicles in the surveillance MRS. Therefore, a moving object detection algorithm for aerial vehicles has been also developed. This algorithm compares the real optical flow obtained from a down-face oriented camera with an artificial optical flow computed using a RANSAC based homography matrix. Two tracking algorithms have been developed to follow the moving objects trajectories. These algorithms can efficiently handle occlusions and crossings, as well as exchange information among robots. The multirobot tracking can be applied to any type of communication structure: centralized, decentralized or a combination of both. Even more, the developed tracking algorithms are independent of the detection algorithms and could be potentially used with other detection procedures or even with static sensors, such as cameras. In addition, using the 3D point clouds available to the robots, a relative localization algorithm has been developed to improve the position estimation of a given robot with observations from other robots. All the developed algorithms have been extensively tested in different simulated CIs using the Webots robotics simulator. Furthermore, the algorithms have also been validated with real robots operating in real scenarios. In conclusion, this dissertation presents a multirobot approach to Critical Infrastructure Surveillance, mainly focusing on Detecting and Tracking Dynamic Objects.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

La mayoría de las aplicaciones forestales del escaneo laser aerotransportado (ALS, del inglés airborne laser scanning) requieren la integración y uso simultaneo de diversas fuentes de datos, con el propósito de conseguir diversos objetivos. Los proyectos basados en sensores remotos normalmente consisten en aumentar la escala de estudio progresivamente a lo largo de varias fases de fusión de datos: desde la información más detallada obtenida sobre un área limitada (la parcela de campo), hasta una respuesta general de la cubierta forestal detectada a distancia de forma más incierta pero cubriendo un área mucho más amplia (la extensión cubierta por el vuelo o el satélite). Todas las fuentes de datos necesitan en ultimo termino basarse en las tecnologías de sistemas de navegación global por satélite (GNSS, del inglés global navigation satellite systems), las cuales son especialmente erróneas al operar por debajo del dosel forestal. Otras etapas adicionales de procesamiento, como la ortorectificación, también pueden verse afectadas por la presencia de vegetación, deteriorando la exactitud de las coordenadas de referencia de las imágenes ópticas. Todos estos errores introducen ruido en los modelos, ya que los predictores se desplazan de la posición real donde se sitúa su variable respuesta. El grado por el que las estimaciones forestales se ven afectadas depende de la dispersión espacial de las variables involucradas, y también de la escala utilizada en cada caso. Esta tesis revisa las fuentes de error posicional que pueden afectar a los diversos datos de entrada involucrados en un proyecto de inventario forestal basado en teledetección ALS, y como las propiedades del dosel forestal en sí afecta a su magnitud, aconsejando en consecuencia métodos para su reducción. También se incluye una discusión sobre las formas más apropiadas de medir exactitud y precisión en cada caso, y como los errores de posicionamiento de hecho afectan a la calidad de las estimaciones, con vistas a una planificación eficiente de la adquisición de los datos. La optimización final en el posicionamiento GNSS y de la radiometría del sensor óptico permitió detectar la importancia de este ultimo en la predicción de la desidad relativa de un bosque monoespecífico de Pinus sylvestris L. ABSTRACT Most forestry applications of airborne laser scanning (ALS) require the integration and simultaneous use of various data sources, pursuing a variety of different objectives. Projects based on remotely-sensed data generally consist in upscaling data fusion stages: from the most detailed information obtained for a limited area (field plot) to a more uncertain forest response sensed over a larger extent (airborne and satellite swath). All data sources ultimately rely on global navigation satellite systems (GNSS), which are especially error-prone when operating under forest canopies. Other additional processing stages, such as orthorectification, may as well be affected by vegetation, hence deteriorating the accuracy of optical imagery’s reference coordinates. These errors introduce noise to the models, as predictors displace from their corresponding response. The degree to which forest estimations are affected depends on the spatial dispersion of the variables involved and the scale used. This thesis reviews the sources of positioning errors which may affect the different inputs involved in an ALS-assisted forest inventory project, and how the properties of the forest canopy itself affects their magnitude, advising on methods for diminishing them. It is also discussed how accuracy should be assessed, and how positioning errors actually affect forest estimation, toward a cost-efficient planning for data acquisition. The final optimization in positioning the GNSS and optical image allowed to detect the importance of the latter in predicting relative density in a monospecific Pinus sylvestris L. forest.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Replication Data Management (RDM) aims at enabling the use of data collections from several iterations of an experiment. However, there are several major challenges to RDM from integrating data models and data from empirical study infrastructures that were not designed to cooperate, e.g., data model variation of local data sources. [Objective] In this paper we analyze RDM needs and evaluate conceptual RDM approaches to support replication researchers. [Method] We adapted the ATAM evaluation process to (a) analyze RDM use cases and needs of empirical replication study research groups and (b) compare three conceptual approaches to address these RDM needs: central data repositories with a fixed data model, heterogeneous local repositories, and an empirical ecosystem. [Results] While the central and local approaches have major issues that are hard to resolve in practice, the empirical ecosystem allows bridging current gaps in RDM from heterogeneous data sources. [Conclusions] The empirical ecosystem approach should be explored in diverse empirical environments.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Purpose – Linked data is gaining great interest in the cultural heritage domain as a new way for publishing, sharing and consuming data. The paper aims to provide a detailed method and MARiMbA a tool for publishing linked data out of library catalogues in the MARC 21 format, along with their application to the catalogue of the National Library of Spain in the datos.bne.es project. Design/methodology/approach – First, the background of the case study is introduced. Second, the method and process of its application are described. Third, each of the activities and tasks are defined and a discussion of their application to the case study is provided. Findings – The paper shows that the FRBR model can be applied to MARC 21 records following linked data best practices, librarians can successfully participate in the process of linked data generation following a systematic method, and data sources quality can be improved as a result of the process. Originality/value – The paper proposes a detailed method for publishing and linking linked data from MARC 21 records, provides practical examples, and discusses the main issues found in the application to a real case. Also, it proposes the integration of a data curation activity and the participation of librarians in the linked data generation process.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

In the last years, there has been an increase in the amount of real-time data generated. Sensors attached to things are transforming how we interact with our environment. Extracting meaningful information from these streams of data is essential for some application areas and requires processing systems that scale to varying conditions in data sources, complex queries, and system failures. This paper describes ongoing research on the development of a scalable RDF streaming engine.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Empirical Software Engineering (ESE) replication researchers need to store and manipulate experimental data for several purposes, in particular analysis and reporting. Current research needs call for sharing and preservation of experimental data as well. In a previous work, we analyzed Replication Data Management (RDM) needs. A novel concept, called Experimental Ecosystem, was proposed to solve current deficiencies in RDMapproaches. The empirical ecosystem provides replication researchers with a common framework that integrates transparently local heterogeneous data sources. A typical situation where the Empirical Ecosystem is applicable, is when several members of a research group, or several research groups collaborating together, need to share and access each other experimental results. However, to be able to apply the Empirical Ecosystem concept and deliver all promised benefits, it is necessary to analyze the software architectures and tools that can properly support it.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

RDF streams are sequences of timestamped RDF statements or graphs, which can be generated by several types of data sources (sensors, social networks, etc.). They may provide data at high volumes and rates, and be consumed by applications that require real-time responses. Hence it is important to publish and interchange them efficiently. In this paper, we exploit a key feature of RDF data streams, which is the regularity of their structure and data values, proposing a compressed, efficient RDF interchange (ERI) format, which can reduce the amount of data transmitted when processing RDF streams. Our experimental evaluation shows that our format produces state-of-the-art streaming compression, remaining efficient in performance.